1- Abassi N.A., Kushad M.M., and Endress A.G. 1998. Active oxygen-scavenging enzymes activities in developing apple flowers and fruits. Scientia Horticulturae, 74: 183–194.
2- Abedi B., Tafazoli E., Rahemi M., Khaladbarin B., and Ganji A. 2010. Changes in sugars, starch, proline and intercostal water in the face of cold in some apricot cultivars (armeniaca Prunus L.). Iranian Journal of Horticulture, 41(4): 375–382. (In Persian)
3- Alburquerque N., Garcıa-Montiel F., Carrillo A., and Burgos L. 2008. Chilling and heat requirements of sweet cherry cultivars and the relationship between altitude and the probability of satisfying the chill requirements. Environmental and Experimental Botany, 64: 162 – 170.
4- Allen R.D., Webb R.P., and Schake S.A. 1997. Use of transgenic plants to study antioxidant defenses. Free Radical Biology and Medicine, 23:473–479.
5- Angelini R., and Frederico R. 1989. Histochemical evidence of polyamine oxidation and generation of hydrogen peroxide in the cell wall. Journal of Plant Physiology, 135: 212–217.
6- Bartollini S., Vitti R., and Zanol J. 2004. The involvement of glutathione in flower bud dormancy overcoming in apricot. Research Signpost, 1: 11– 28.
7- Bassi D., Vitti R., and Bartolini S. 2006. Recent advances on environmental and physiological challenges in apricot growing. Agricultural Science, 717: 23– 31.
8- Bates L.S., Waldren R.P., and Teare I.D. 1973. Rapid determination of free proline for water stress studies. Plant and soil, 39:205–207.
9- Bowler C., Montagu M.V., and Inze D. 1992. Superoxide dismutase and stress tolerance. Annual Review of Plant Physiology and Plant Molecular Biology, 43:83–116.
10- Dennis F.G. 2003. Problem in standardizing methods for evaluating the chilling requirement for the breaking of dormancy in buds of woody plants. HortScience, 3: 347–350.
11- Dirk I., and Montago M.V. 2002. Oxidative Stress in Plants. Journal of Research Science, 14:177-186.
12- Ebdali l. 2012. Evaluation of oxidative metabolism in flower buds of Prunus armeniaca after the developmental period during the cold season. Faculty of Natural Sciences, Tabriz University. Tabriz. Master's Thesis. (In Persian)
13- Felker F.C., and Robitaille H.A. 1985. Chilling accumulation and rest of sour cherry flower buds. Journal of the American Society of Horticultural Science, 110(2): 227-232.
14- Fridovich I. 1988. The biology of oxygen radicals: general concepts. p. 145–160. In Halliwell B (ed.) Oxygen radicalsand tissue injury. Journal of the American Society of Horticultural Science.
15- Fuchigami L.H., and Nee C. 1987. Degree growth stage model and restbreaking mechanisms in temperate woody perennials. HortScience, 22:836–845.
16- Ghamsari L., Keyhani E., and Golkhoo Sh. 2007. Kinetics Properties of Guaiacol Peroxidase Activity in Crocus sativus L. Corm during. Rooting Iranian Biomedical Journal, 11(3): 137–146.
17- Guerriero R., Viti R., and Monteleone P., 2006. Evaluation of end of dormancy several apricot cultivars according to different methodological approaches. Acta Horticulturae, 701: 99–103.
18- Hamrahi S., Habibi D., Madani H., and Mashhadi M., 2008. Cycocel effect on enzymes and micro-nutrients anti as indices of oxidant stress resistance in oilseed rape. The new data agricultural, 3: 2–14
19- Hare P.D., and Cress, W.A. 2004. Implications of stress induced proline accumulation in plant. African Journal of Biotechnology, 9(7): 1008–1015.
20- Hussain S., Liu G., Liu D., Ahmed M., Hussain N., and Teng Y. 2015. Study on the expression of dehydrin genes and activities of antioxidative enzymes in floral buds of two sand pear (Pyrus pyrifolia Nakai) cultivars requiring different chilling hours for bud break. Turkish Journal of Agriculture and Forestry, 39(6):930–939.
21- Jogaiah S., Maske S.R., and Upadhyay, A. 2015. Rootstock induced changes in enzymes activity and biochemical constituents during budbreak in ‘Thompson Seedless’ grapevine. Vitis, 53(2): 57–64.
22- Kang, H.M., and Saltveit M.E., 2002. Effect of chilling on antioxidant enzymes and DPPH-radical scavenging activity of high- and low-vigour cucumber seedling radicles. Plant, Cell and Environment, 25: 1233–1238.
23- Khanizadeh S., Brodeur C., Granger R., and Buszard D. 2000. Factor associated with winter injury to apple trees. International Society for Horticultural Science, 514(20):179–192.
24- Lassheen A.M., and Chaplin C.E. 1971. Biochemical Comparison of Seasonal Variations in three peach cultivars differing in cold hardiness. Journal of American Society for Horticultural Science, 96(2): 212–222.
25- Mansouri Deh Shoeybi R., Davari Nejad Gh., Hokmabadi H., and Tehranifar, A. 2011. Evaluation of changes in proline, total protein and soluble sugars during phenological stages of flower buds of Pistachio cultivars. Journal of Horticultural Science, 25(2): 116–121. (in Persian)
26- Mathe C, Barre A, Jourda C and Dunand C .2010. Evolution and expression of class III peroxidases. Archives of Biochemistry and Biophysics. 500(1):58–65.
27- Monk L.S., Fagerstedt K.V., and Crawford R.M. 1989. Oxygen toxicity and superoxide dismutase as an antioxidant in physiological stress. Physiol Plant, 76: 456–459.
28- Nir G., Shulman Y., Fanberstein L., and Lavess S. 1986. Changes in the activity of catalase (EC1.11.1.6) in relation to the dormancy of grapevine (Vitis vinifera L.) buds. Plant Physiology, 81: 1140–1142.
29- Pakkish Z, Rahemi M and Baghizadeh A .2009. Seasonal caange of peroxidase, polyphenol oxidase enzymes activity and phenol content during and after rest in Pistachio flower buds. World applied Science Journal. 6: 1193–1199.
30- Razavi F., Haji-lou J., and Tabatabaii S.J. 2011. Determination of the heat and chill requirements of flower buds in some peach cultivars (Prunus persica L.). Journal of Horticultural Science, 26(1): 17–24. (in Persian)
31- Richardson E.A., Seeley S.D., and Walker D.R .1974. A model for estimating the completion of rest for Redhaven and Elberta peach trees. HorstScience, 9:331–332.
32- Rohde A., and Bhalerao R.P. 2007. Plant dormancy in perennial context. Trends Plant Science, 12: 217–223.
33- Ruiz D., Campoy J.A., and Egea J. 2007. Chilling and heat requirements of apricot cultivars for flowering. Environmental and Experimental Botany, 61:254 – 263.
34- Saure M.C. 1985. Dormancy release in deciduous fruit tress. Horticultural Reviews, 7:239–300.
35- Szabados L., and Arnould S. 2009. Proline: a multifunctional amino. Plant Science, 15:89–97.
36- Toupchizade Tabrizian S. 2014. Evaluation of some physiological and enzymatic changes in some apricot cultivars during flower bud dormancy. Faculty of Agriculture, Tabriz University. Tabriz. Master's Thesis.
37- Viti R., Bartollini S., and Guerrirro R. 2003. The influence of sampling from different canopy positions on the evaluation on flower bud anomalies and dormancy in apricot. Fruits, 58: 117–126.
38- Wang C.Y. 1991. Chilling injury of Horticultural Crops. US Department of Agriculture, Beltsville, Maryland.
39- Wang S., Jiao H., and Faust M. 1995. Changes in ascorbate, glutatation and related enzymes activity during thidiazuron indused bud break of apple. Physiologia plantarum, 82:231–236.
40- Yordanova R., Christork K., and Popora L.P. 2003. Antioxidative oenzymes in barley plants subjected to soil flooding. Environmental and Experimental Botany, 51: 93- 101.
41- Zhang Z., Huber D., and Rao J. 2013. Antioxidant systems of ripening avocado (Persea americana Mill.) fruit following treatment at the preclimacteric stage with aqueous 1-methylcyclopropene. Postharvest Biology and Technology, 76: 58–64.
42- Zhi-You Y., Xia L., Ling-Hao L., Xing-Guo., and Tian-Li Y. 2003. Effects of temperature and sevsral chemicals on metabolic changes during dormancy release in NJ72 nectariane. Agricutural Sciences in China, 2:549–555.
43- Zolfaghari R., Hosseini S.M., and Korori S.A.A. 2005. Relationship between peroxidase and catalase with metabolism and environmental factors in Beech (Fagus orientalis L.) in three different elevations. International journal of environmental sciensic, 1 (2): 22–25.