تعداد نشریات | 49 |
تعداد شمارهها | 1,777 |
تعداد مقالات | 18,924 |
تعداد مشاهده مقاله | 7,754,434 |
تعداد دریافت فایل اصل مقاله | 5,022,992 |
مطالعه سینتیک تخریب حرارتی دینامیکی بیوپلاستیک حاصل از آمیخته ژلاتین پای مرغ و آرد کامل سیبزمینی | ||
نشریه پژوهشهای علوم و صنایع غذایی ایران | ||
مقاله 7، دوره 15، شماره 2 - شماره پیاپی 56، خرداد و تیر 1398، صفحه 309-322 اصل مقاله (696.98 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22067/ifstrj.v15i2.73891 | ||
نویسندگان | ||
حسام عمرانی فرد1؛ محمدحسین عباسپورفرد1؛ مهدی خجسته پور ![]() ![]() | ||
1گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه فردوسی مشهد. | ||
2گروه مهندسی شیمی، دانشکده مهندسی، دانشگاه فردوسی مشهد. | ||
چکیده | ||
در این مطالعه، سینتیک تخریب حرارتی دینامیکی بیوپلاستیک تهیه شده از آمیخته ژلاتین پای مرغ- آرد کامل سیبزمینی و نمونه شاهد که متشکل از آرد کامل سیبزمینی بود، مورد بررسی و مقایسه قرار گرفتند. ژلاتین استفاده شده در این مطالعه از نوع مرغی بود که با استفاده از روشهای شیمیایی از پای مرغ استخراج شد. در این پژوهش دو مدل ایزوکانورژنال انتگرالی شامل مدل فلین- وال- اوزاوا (FWO) و کیسینجر- آکاهیرا- سانوز (KAS) در نظر گرفته شد که با استفاده از هر کدام از این مدلها، پارامترهای سینتیک تخریب حرارتی شامل انرژی فعالسازی و ضریب بسامد برای نمونههای بیوپلاستیک محاسبه گردید. نتایج نشان داد که بیشینهی انرژی فعالسازی محاسبه شده برای بیوپلاستیک آمیخته (GC) به روش FWO در نسبت تبدیل 9/0 و برابر kJ/mol162 و پس از آن در نسبت تبدیل 5/0 و برابر kJ/mol150 است، در حالی که بیشینه انرژی فعالسازی بیوپلاستیک شاهد (P) در نسبت تبدیل 6/0 و برابر kJ/mol217 مشاهده شد. مقادیر بدست آمده برای ضریب بسامد نیز نشان داد این پارامتر بین 1/min1014×27/1 تا 1/min104×25/1 برای بیوپلاستیک آمیخته و برای بیوپلاستیک شاهد بین 1/min1014×94/1 تا 1/min104×82/1 بسته به تغییرات نسبت تبدیل و نرخهای مختلف گرمادهی، تغییر میکند. | ||
کلیدواژهها | ||
انرژی فعالسازی؛ بیوپلاستیک؛ ژلاتین؛ سیبزمینی؛ سینتیک تخریب حرارتی | ||
مراجع | ||
اولیایی، س.ا.، مؤیدى، ع. ا. و قنبرزاده، ب.، 1396، اثر مونتموریلونیت (MMT) بر مشخصههاى ساختارى، نورى و حرارتى فیلمهاى نانوبیوکامپوزیتى نشاسته سیبزمینى تولید شده در ایران. فصلنامه فناوریهای نوین غذایی، 15، 105-89.
داورپناه، ز.، کرامت، ج.، همدمی، ن.، شاهدی، م. و بهزاد، ط.، 1393، خواص فیلم میکروکامپوزیت زئین حاوى مونتموریلونیت اصلاح شده. فصلنامه علوم و فناوری های نوین غذایی، 5، 56- 49.
عمرانی فرد، ح.، غضنفری مقدم، ا.، شمسی، م. و عطائی، ا.، 1391، تعیین برخی خواص مکانیکی و بررسی سینتیکی تخریب گرمایی زیستپلاستیکهای تهیه شده از سلولوز کاه و آرد گندم. مجله علوم و تکنولوژی پلیمر، 25، 74- 65.
Akahira, T. & Sunose, T., 1971, Method of determining activation deterioration constant of electrical insulating materials. J. Res. Rep. Chiba. Inst. Technol., 16, 22–31.
Avella, M., Errico, M.E., Rimedio, R. & Sadocco, P., 2002, Preparation of biodegradable polyesters/high‐amylose‐starch composites by reactive blending and their characterization. J. Appl. Polym. Sci., 83, 14321442.
Chuaynukul, K., Prodpran, T. & Benjakul, S., 2014, Preparation, thermal properties and characteristics of gelatin molding compound resin. J. Research Journal of Chemical and Environmental Sciences, 2, 19.
Chuaynukul, K., Prodpran, T. &Benjakul, S., 2015, Properties of thermo-compression molded bovine and fish gelatin films as influenced by resin preparation condition. J. International Food Research, 22, 10951102.
Das, P. & Tiwari, P., 2017, Thermal degradation kinetics of plastics and model selection. J. Thermochimica Acta, 654, 191–202.
Das, S., Routray, M. & Nayak, P., 2008, Spectral, thermal, and mechanical properties of furfural and formaldehyde cross-linked soy protein concentrate: a comparativestudy. J. Polym. Plast Technol. Eng., 47, 576–582.
Dhyani, V., Kumar, J. & Bhaskar, T., 2017, Thermal decomposition kinetics of sorghum straw via thermogravimetric analysis. J. Bioresource Technology, 245, 1122–1129.
Doyle, C.D., 1962, Estimating isothermal life from thermogravimetric data. J. Appl. Polym. Sci., 6, 639–642.
Flynn, J.H., 1997, The temperature integral-its use and abuse. J. Thermochim. Acta., 300, 83–92.
Hashim, P., MohdRidzwan, M.S. & Bakar, J., 2014, Isolation and characterization of collagen from
chicken feet. J. International Scholarly and Scientific Research and Innovation, 8, 250254.
Irwandi, J., Faridayanti, S., Mohamer, E.S.M., Hamzah, M.S., Torla, H.H. & Man, Y.B.C., 2009, Extraction and characterization of gelatin from different marine fish species in Malaysia. J. International Food Research, 16, 381389.
Jerez, A., Partal, P., Martinez, I., Gallegos, C. & Guerrero, A., 2007, Protein-based bioplastics: Effect of thermo-mechanical processing. J. Rheologica. Acta., 46, 711–720.
Kim, S.H., 2010, Investigation of thermodynamic parameters in the thermal decomposition of plastic waste. J. Waste Lube Oil Comp, 44, 5313–5317.
Liang, Y., Cheng, B., Si, Y., Cao, D., Jiang, H., Han, G. & Liu, X., 2014, Thermal decomposition kinetics and characteristics of Spartina alterniflora via thermogravimetric analysis. J. Renewable Energy, 68, 111–117.
Murray, P. & White, J., 1955, Kinetics of the thermal dehydration of clays. Part IV. Interpretation of the differential thermal analysis of the clay minerals. J. Trans. Br. Ceram. Soc., 54, 204–238.
Ozawa, T., 1965, A new method of analyzing thermogravimetric data. J. Bull. Chem. Soc. Jpn. 38, 1881–1886.
Pommet, M., Redl, A., Morel, M.H., Domenek, S. & Guilbert, S., 2003, Thermoplastic processesing of protein-based bioplastics: Chemical engineering aspects of mixing, extrusion and hot molding. J. Macromolecular Symposia, 197, 207–218.
Shlensky, O.F., Vaynsteyn, E.F. & Matyukhin, A.A., 1988, Dynamic thermal decomposition of linear polymers and its study by thermoanalytical methods. J. Therm. Anal., 34, 645–655.
Sun, S., Song, Y. & Zheng, Q., 2007, Morphologies and properties of thermo-moulded biodegradable plastics based on glycerol-plasticized wheat gluten. J. Food Hydrocol., 21, 1005–10013.
Swain, S., Rao, K. & Nayak, P., 2005, Biodegragable polymers. Part II. Thermal degradation of biodegradable plastics cross-linked from formaldehyde-soy protein concentrate. J. Therm. Anal. Calorim. 79, 33–38.
Uttaravalli, A.N. & Dinda, S., 2017, Kinetics of thermal decomposition of ketonic resins. J. Materials Today Communications, 12, 88–94.
Vyazovkin, S., Burnham, A.K., Criado, J.M., Perez-Maqueda, L.A., Popescu, C. & Sbirrazzuoli, N., 2011, ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. J. Thermochim. Acta., 520, 1–19.
Vyazovkin, S., Chrissafis, K., Di Lorenzo, M.L., Koga, N., Pijolat, M., Roduit, B., Sbirrazzuoli, N. & Suñol, J.J., 2014, ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. J. Thermochim. Acta., 590, 1–23.
Widyasari, R. & Hashim, S., 2014, Extraction and characterization of gelatin from chicken feet by acid and ultrasound assisted extraction. J. Food and Applied Bioscience, 2, 8597.
Yao, F., Wu, Q., Lei, Y., Guo, W. & Xu, Y., 2008, Thermal decomposition kinetics of natural fibers: Activation energy with dynamic thermogravimetric analysis. J. Polymer Degradation and Stability, 93, 9098.
Yuan, X., He, T., Cao, H. & Yuan, Q., 2017, Cattle manure pyrolysis: kinetic and thermodynamic analysis with isoconversional methods. J. Renewable Energy, 107, 489496. | ||
آمار تعداد مشاهده مقاله: 312 تعداد دریافت فایل اصل مقاله: 114 |