تعداد نشریات | 49 |
تعداد شمارهها | 1,778 |
تعداد مقالات | 18,927 |
تعداد مشاهده مقاله | 7,789,689 |
تعداد دریافت فایل اصل مقاله | 5,085,675 |
تعیین دماهای کاردینال جوانهزنی علفهرز گلرنگوحشی (Carthamus oxycantha) با استفاده از مدلهای رگرسیونی مختلف | ||
پژوهش های حفاظت گیاهان ایران | ||
مقاله 10، دوره 32، شماره 4 - شماره پیاپی 42، اسفند 1397، صفحه 569-578 اصل مقاله (299.68 K) | ||
نوع مقاله: مقالات پژوهشی | ||
شناسه دیجیتال (DOI): 10.22067/jpp.v32i4.66879 | ||
نویسندگان | ||
فاطمه فخرراد* 1؛ علی قنبری2؛ مهدی راستگو3 | ||
1دانشگاه فردوسی | ||
2فردوسی مشهد | ||
3فردوسی | ||
چکیده | ||
به منظور بررسی تأثیر دما بر درصد و سرعت جوانهزنی و تعیین دماایکاردینال جوانهزنی علفهرز گلرنگ وحشی، آزمایشی در قالب طرح کاملاً تصادفی با چهار تکرار در دماهای ثابت 5، 10، 15، 20، 25، 30، و 35 درجهسانتیگراد انجام شد. به منظور ارزیابی تأثیر دما بر سرعتجوانهزنی بذور از سه مدل رگرسیونی خطوط متقاطع، چند جملهای درجه دوم و پنج پارامتری بتا استفاده شد. نتایج آزمایش نشان داد که دما تأثیر معنیداری بر درصد و سرعت جوانهزنی داشت. کمترین درصد جوانهزنی در دمای 30 درجه (23 درصد) مشاهده شد، در حالیکه کمترین سرعت جوانهزنی (62/0) در دمای 5 درجه اتفاق افتاد. بالاترین درصد و سرعت جوانهزنی در دامنهدمایی 20 -15 درجه سانتیگراد بدست آمد و در دمای 35 درجه سانتیگراد هیچ بذری جوانه نزد. بر اساس مدلهایرگرسیونمورد استفاده، درجه حرارتهای کاردینال جوانهزنی به ترتیب در دامنه (5 – 41/4)، (91/19–6/19) و (66/33 –40/28) بدست آمد. بهترین مدل برازش داده شده برای تعیین دمایکاردینال گلرنگ وحشی بر مبنای جذر میانگین مربعات خطای آزمایش، ضریب تبیین و مقادیر باقیمانده حاصل از برازش، مدل خطوط متقاطع تعیین شد. | ||
کلیدواژهها | ||
.سرعت جوانه زنی؛ درجه حرارت بهینه؛ مدل خطوط متقاطع | ||
مراجع | ||
1. Asgarpour R., Mijani S., and Ghorbani R. 2013. Effect of temperature on germination rate of two passion grasses (Salsola kali L.) based on regression models, Journal of Plant Protection (Agriculture Sciences and Technology), 7(4): 476-483. (In Persian with English abstract)
2. Alvarado V., and Bradford K.J. 2002. A hydrothermal time model explains the cardinal temperatures for seed germination. Journal of Plant, Cell and Environment, 25: 1061-1069.
3. Bassiri A., Rouhani I., and Ghorashy S.R. 1975. Effect of temperature and scarification on germination and emergence of wild safflower, Carthamus oxyacantha. Agricultural Science, 84: 239-243.
4. Behdani M.A., Koocheki A., Nassiri M., and Rezvani P. 2008. Models of predict flowering time in the main Saffron production regions of Khorasan province. Applied Sciences, 8: 907-909.
5. Bewley J.D., Bradford K.j., Hilhorst H.W.M., and Nonogaki H. 2012. Seeds: Physiology of Development, Germination and Dormancy, Third Edition. Press, Springer New York, Heidelberg Dordrecht London.
6. Bradford K.J. 2002. Applications of hydrothermal time to quantifying and modeling seed germination and dormancy. Weed Science, 50: 248–260.
7. Cave R.L, Birch C.J., Hammer G.L., Erwin J.E., and Johnston M.E. 2011. Cardinal temperature and thermal time for seed germination of Brunonia australis (Goodeniaceae) and Calandrinia sp. (Portulacaceae). HortScience, 46:753–758.
8. Dashti M., Kafi M., Tavakkoli H., and Mirza M. 2015. Cardinal temperatures for germination of Salvia leriifolia Benth. herba polonica, 60: 5-18.
9. Dittrich M., Petrak F., Rechinger K.H., and Wagenitz G. 1979. Compositae Cynareae. In: Rechinger, K.H. (ed.), Flora Iranica, Pp: 139-468. Journal of Echology, 18:1216–1220.
10. Ebrahimi E., and Eslami S.V. 2012. Effect of environmental factors on seed germination and emergence of invasive Ceratocarpus arenarius. Weed Research, 52: 50–59.
11. Forcella F., Benech-Arnold R.L., Sanchez R., and Ghersa C.M. 2000. Modelling seedling emergence. Field Crops Research, 67: 123-139.
12. Ghaderi–Far F., Soltani A., and Sadeghi-pour H.R. 2009. Evaluation of nonlinear regression models in quantifying germination rate of medicinal pumpkin (Cucurbita pepo L.) Journal of Plant Protection (Agriculture Sciences and Technology), 16(4): 1 - 19. (In Persian with English abstract)
13. Ghaderi-Far F., Gherekhloo J., and Alimagham M. 2010. Influence of environmental factors on seed germination and seedling emergence of yellow sweet clover (Melilotus officinalis). Planta Daninha, 28: 463–469.
14. Ghersa C.M., Benech-Arnold R.L., Sattore E.H., and Martınez-Ghersa M.A. 2000. Advances in weed management strategies. Field Crop Research, 67: 95–104.
15. Hakansson I., Myrbeck A., and Erarso A. 2002. A review of research on seedbed preparation for small grains in Sweden. Soil Tillage Research, 64: 23–40.
16. Hashemi A., Baruti S.H., and Tavakolafshari R. 2017. Determine the cardinal temperatures of Marguerite seed (Chrysanthemum maximum Ramond). Iranian Journal of Seed Science and Technology, 5: 77-84. (In Persian)
17. Hosseini M., Mojab M., and Zamani G.H. 2017. Cardinal temperatures for seed germination of wild barley, barley grass and hoary cress. Archives of Agronomy and Soil Science, 63: 352-361.
18. Khalaj H., Allahdadi I., Iranejad H., Akbari G.A., MinBashi M., Baghestani M.A., Labbafi M., and Mehrafarin A. 2015. Using nonlinear regression model for estimation of cardinal temperatures in three medicinal plants. Journal of Kasetsart -Natural Science, 49: 165 – 173.
19. Maguire J.D. 1962. Speed of germination aid in selection and evaluation for seedling emergence and vigor. Crop Science, 2: 176-177.
20. Masin R., Zuin M.C., Archer D.W., Forcella F., and Zanin G. 2005. A predictive model to aid control of annual summer weeds in turf. Weed Science, 53:193–201.
21. Meyer S.E., and Pendleton R.L. 2000. Genetic regulation of seed dormancy in Purshia tridentata (Rosaceae). Annuals of Botany, 85: 521-529.
22. Parmoona G.H., Hamed Akbarib S.A., and Ebadia A. 2015. Quantifying cardinal temperatures and thermal time required for germination of Silybum marianum. Journal of Seed and Crop, 3: 145-151.
23. Pourreza J., and Bahrani S.A. 2012. Estimating Cardinal Temperatures of Milk Thistle (Silybum marianum) Seed Germination. Agriculture and Environment Science, 12: 1030-1034.
24. Rashed Mohsen M., Najafi H., and Akbarzadeh M. 2001. Biology and Weed Control. Ferdowsi University Press, Mashhad. (In Persian)
25. Rowse H.R., and Finch-Savage W.E. 2003. Hydrothermal threshold models can describe the germination response of carrot (Daucus carota) and onion (Allium cepa) seed populations across both sub-and supra-optimal temperatures. New Phytologist, 158: 101–108.
26. Shafii B., and PriceSource W.J. 2001. Estimation of cardinal temperatures in germination data analysis. Journals of Agriculture Biology and Environments Statistics, 6: 356–366.
27. Saeidnejad A. H., Kafi M., and Pessarakli M. 2012 Evaluation of cardinal temperatures and germination responses of four ecotypes of Bunium persicum under different thermal conditions. Agriculture and Crop Science, 4: 1266-1271.
28. Soltani A., Robertson M.J., Torabi B., Yousefi-Daz M., and Sarparast R. 2006. Modeling seedling emergence in chickpea as affected by temperature and sowing depth. Agricultural and Forest Meteorology, 138: 156-167.
29. Soltani A., and Sinclair T.R. 2012. Modeling physiology of crop development, growth and yield. Oxford shire: CABI Press; p.322.
30. Steckel L.E., Sprague C.L., Stoller E.W., and Wax L.M. 2004. Temperature effects on germination of nine Amaranthus species. Weed Science, 52: 217–221.
31. SitiAishah H., Saberi A.R., Halim R.A., and Zaharah A.R 2010. Salinity effects on germination of 585 forage sorghumes. Journal of Agronomy, 9: 169-174
32. Taherabadi S.H., Goldani M., Taherabadi S.H., and Fazeli Kakhki S.F. 2015. Determination of cardinal temperatures of germination of weed seeds of Hyoscyamus niger, Aconitum napellus and Cannabis sativa. Journal of plant protection, 29: 16-22. (In Persian)
33. Tanveer A., Muhammad Zeshan Farid M., Tahir M., Mansoor Javaid M., and Khaliq A. 2012. Environmental factors affecting the germination and seedling emergence of Carthamus oxyacantha M. Bieb. (Wild Safflower). Pakistan Journal of Weed Science and Research, 18: 221-235.
34. Wang R., Bai Y., and Tanino K. 2004. Effect of seed size and sub-zero imbibitions-temperature on the thermal time model of winterfat (Eurotia lanata (Pursh) Moq.). Journal of Environmental and Experimental Botany, 51: 183-187.
35. Wang R. 2006. Seedling emergence of winterfat (Krascheninnikovia lanata (Pursh) A.D.J. Meeuse & Smit) in the field and its prediction using the hydrothermal time model. Journal of Arid Environments, 64: 37-53.
36. Wang L., Jin S., Wu L., Zhou X., Liu X., and Bai L. 2016. Influence of Environmental Factors on Seed Germination and Emergence of Asia Minor Bluegrass (Polypogon fugax). Weed Technology, 30: 533-538.
37. Zarif-ketabi H., Kazaei H.R., and A Nezami A. 2016. Estimation of the cardinal temperatures for germination of four Satureja species growing in Iran. Herba Polonica, 62: 7-21.
38. Zhou J., Deckard E.L., and Ahrens W.H. 2005. Factors affecting germination of hairy nightshade (Solanum sarrachoides) seeds. Weed Science, 53: 41-45 | ||
آمار تعداد مشاهده مقاله: 244 تعداد دریافت فایل اصل مقاله: 227 |