تعداد نشریات | 49 |
تعداد شمارهها | 1,776 |
تعداد مقالات | 18,924 |
تعداد مشاهده مقاله | 7,741,527 |
تعداد دریافت فایل اصل مقاله | 5,003,661 |
بهینهسازی ویژگیهای آنتیاکسیدانی و تغذیهای پروتئین نخود کاجان (Cajanus cajan) طی هیدرولیز با آنزیم پپسین به کمک روش سطح پاسخ | ||
نشریه پژوهشهای علوم و صنایع غذایی ایران | ||
مقاله 5، دوره 15، شماره 5 - شماره پیاپی 59، آذر و دی 1398، صفحه 583-596 اصل مقاله (501.04 K) | ||
نوع مقاله: مقاله پژوهشی فارسی | ||
شناسه دیجیتال (DOI): 10.22067/ifstrj.v15i4.76968 | ||
نویسندگان | ||
الهام رنجبر ندامانی1؛ علیرضا صادقی ماهونک ![]() ![]() | ||
1گروه شیمی مواد غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان. | ||
2گروه بیواکتیو، دانشگاه صنعتی دانمارک. | ||
3گروه فارماکولوژی، دانشگاه علوم پزشکی گرگان. | ||
چکیده | ||
در این پژوهش، از روش سطح پاسخ برای بهینهسازی و مدلسازی شرایط هیدرولیز پروتئینهای نخود کاجان (Cajanus cajan) (لپه) توسط پپسین و تولید پروتئینهای هیدرولیز شده با ویژگیهای آنتیاکسیدانی و تغذیهای استفاده شد. هیدرولیز در نسبت آنزیم به سوبسترا 1، 2 و 3 درصد(وزنی- وزنی)، دماهای 30، 35 و 40 درجه سانتیگراد و زمانهای 2، 5/3 و 5 ساعت انجام، و توانایی مهار رادیکال آزاد 2و2 دی فنیل 1 پیکیریل هیدرازیل، قدرت احیاءکنندگی، مهار رادیکال هیدروکسیل و ظرفیت آنتیاکسیدانی کل بهعنوان متغیرهای وابسته بررسی شد. شرایط بهینه هیدرولیز برای دستیابی به بیشترین میزان فعالیت آنتیاکسیدانی، نسبت آنزیم به سوبسترا 15/2 درصد، دمای 9/39 درجه سانتیگراد و زمان 52/4 ساعت بود. پروتئین هیدرولیز شده دارای مقادیر زیادی از آمینواسیدهای آنتیاکسیدان گلوتامیک اسید و فنیل آلانین بود و از نظر وجود آمینواسیدهای ضروری دارای کیفیت تغذیهای مناسبی بود. نتایج بررسی توزیع وزن مولکولی (به روش FPLC) نشان داد که وزن مولکولی بیشتر پپتیدهای تولید شده کمتر از 10 کیلودالتون است که بیشترین تأثیر را در فعالیت آنتیاکسیدانی دارند. نتایج نشان داد که از پروتئینهای هیدرولیز شده نخود کاجان توسط پپسین میتوان بهعنوان آنتیاکسیدان طبیعی و همچنین بهعنوان منبع آمینواسیدهای ضروری استفاده کرد. | ||
کلیدواژهها | ||
پروتئین هیدرولیز شده؛ پپسین؛ آنتیاکسیدان؛ نخود؛ پپتیدهای زیستفعال | ||
مراجع | ||
Adebowale, K. O., Lawal, O. S. 2004. Comparative study of the functional properties of bambarra groundnut (Voandzeia subterranean), jack bean (Canavaliaensiformis) and mucuna bean (Mucunapruriens) flour. Food Research International, 37:355-365.
Akintayo, E.T., Oshodi, K.O. & Esuoso, K.O., 1999, Effects of NaCl, ionic strength and pH on the foaming and gelation of pigeon pea (Cajanus cajan) protein concentrates. Food Chemistry 66: 51-56.
Association of Official Analytical Chemists (AOAC), 2005, Official methods of analysis. 18th ed. Washington, DC.
Castro, R.J. S. & Sato, H.H., 2015, A response surface approach on optimization of hydrolysis parameters for the production of egg white protein hydrolysates with antioxidant activities. Biocatalysis and Agricultural Biotechnology, 4(1): 55-62.
Chi, C.F., Hu, F.Y., Wang, B., Li, T. & Ding, G.F., 2015, Antioxidant and anticancer peptides from the protein hydrolysate of blood clam (Tegillarca granosa) muscle. Journal of Functional Foods, 15: 301-313.
FAO, 2011, Dietary protein quality evaluation in human nutrition. Report of an FAO Expert Consultation Auckland, New Zealand, 31 March–2 April.
Farvin, K.H.S., Andersen, L.L., Nielsen, H.H., Jacobsen, C., Jakobsen, G., Johansson, I. & Jessen, F., 2014, Antioxidant activity of Cod (Gadus morhua) protein hydrolysates: In vitro assays and evaluation in 5% fish oil-in-water emulsion. Food Chemistry, 149: 326-334.
Garcia-Moreno, P.J., Guadix, A., Guadix, E.M. & Jacobsen, C., 2016, Physical and oxidative stability of fish oil-in-water emulsions stabilized with fish protein hydrolysates. Food Chemistry, 203: 124-135.
Ghnimi, S., Budilarto, E. & Kamal-Eldin, A. 2017, the New Paradigm for Lipid Oxidation and Insights to Microencapsulation of Omega-3 Fatty Acids. Comprehensive Reviewsin Food Science and Food Safety, 16: 1206-1216.
Gringer, N., Safafar, H., Mesnildot, A., Nielsen, H.H., Rogowska-Wrezesinska, A., Undeland, I. & Baron, C.P. (2016) Antioxidative low molecular weight compounds in marinated herring (Clupea harengus) salt brine. Food Chemistry, 194: 1164-1171.
Halim, N.R.A. & Sarbon, N.M. 2017. A response surface approach on hydrolysis condition of eel (Monopterus Sp.) protein hydrolysate with antioxidant activity. International Food Research Journal, 24(3): 1081-1093.
Jeewanthi, R. K. C., Lee, N. & Paik, H., 2015, Improved Functional Characteristics of Whey Protein Hydrolysates in Food Industry. Korean Journal of Food Science and Animal Resources, 35(3): 350-359.
Jurado, E., Vicaria, J.M., Lechunga, M. & Moya-Ramirez, I., 2012, Pepsin extraction process from swine wastes. Procedia Engineering, 42: 1346- 1350.
Khairul Anwar, M.S. & Mohamed Afizal, M.A., 2015, Overview on the Response Surface Methodology (RSM) in Extraction Processes. Journal of Applied Science & Process Engineering, 2(1): 8- 17.
Kinsella, J. E., 1976, Functional properties of proteins in foods: A survey. Critical Reviews in Food Science and Nutrition, 7: 219-280.
Kumar, N.S.S., Nazeer, R.A. & Jaiganesh, R., 2011, Purification and biochemical characterization of antioxidant peptide from horse mackerel (Magalaspis cordyla) viscera protein. Peptides 32: 1496-1501.
Lacroix, I.M., Chen, X.-M., Kitts, D. & Li-Chan, E.C., 2017, Investigation into the bioavailability of milk protein-derived peptides with dipeptidyl-peptidase IV inhibitory activity using Caco-2 cell monolayers. Food and Function. 2017, 8, 701–709.
Li, B., Qiao, L., Li, L., Zhang, Y., Li, K., Wang, L. & Qiao, Y., 2017, A novel antihypertensive derived from Adlay (Coix larchryma-jobi L. Var. ma-yuen Stapf) Glutelin. Molecules, 22(1): 123.
Meshginfar N, Sadeghi-Mahoonak, A., Ziaiifar, A.M., Ghorbani, M. & Kashaninejad, M., 2014, Study of antioxidant activity of sheep visceral protein hydrolysate: Optimization using response surface methodology. ARYA Atherosclerosis, 10(4): 179-84.
Ng, K.L., Ayob, M.K., Said, M., Osman, M.A. & Ismail, A., 2013, Optimization of enzymatic hydrolysis of palm kernel cake protein (PKCP) for producing hydrolysates with antiradical capacity. Industrial Crops and Products, 43: 725-731.
Nix, A., Paull, C.A. & Colgrave, M., 2015, The flavonoid profile of pigeonpea, Cajanus cajan: a review. SpringerPlus, 4(1):125.
Nourmohammadi, E., Sadeghi Mahoonak, A., Ghorbani, M., Alami, M. & Sadeghi, M. 2017. Identification of the optimum conditions to anti-oxidative peptides production through the enzymatic hydrolysis of pumpkin oil cake protein by pepsin. Journal of Food Science and Technology. 61(13): 135- 142.
Olagunju, A.I., Omoba, O.S., Enujiugha, V.N., Alashi, A.M. & Aluko, R.O. 2018. Antioxidant properties, ACE/renin inhibitory activities of pigeon pea hydrolysates and effects on systolic blood pressure of spontaneously hypertensive rats. Food Science and Nutrition. 6:1879–1889.
Ovissipour, M., Abedian-Kenari, A., Motamedzadegan, A. & Nazari, R.M., 2010, Optimization of Enzymatic Hydrolysis of Visceral Waste Proteins of Yellowfin Tuna (Thunnus albacares). Food Bioprocess and Technology, 5(2): 696-705.
Park, S.Y., Kim, Y.S., Ahn, C.B. & Je, J.Y., 2016, Partial purification and identification of three antioxidant peptides with hepatoprotective effects from blue mussel (Mytilus edulis) hydrolysate by peptic hydrolysis. Journal of Functional Foods, 20: 88–95.
Pereira D, Simionatto Pinheiro R, Fernanda Serafini Heldt L et al 2017. Rosemary as natural antioxidant to prevent oxidation in chicken burgers. Food Science and Technology, 37(1): 17-23.
Queiroz, A.L.M., Bezerra, T.K.A., Pereira, S.F., Silva, M.E.C., Gadelha, C.A.A., Gadelha, T.S., Pacheco, M.T.B. & Madruga, M.S., 2017, Functional Protein Hydrolysate From Goat By-Products: Optimization And Characterization Studies. Food Bioscience, 20: 19- 27.
Raftani-Amiri, Z., Safari, R., Bakhshande, T. & Ahmadi-Vavsari, F., 2016, Functional properties of fish protein hydrolysates from Cuttlefish (Sepia pharaonis) muscle produced by two commercial enzymes. Iranian Journal of Fisheries Sciences, 15 (4): 1485-1499.
Rakte, A.S. & Nanjwade, B.K., 2014, Proteolytic Enzymes Delivery Systems: A Review. International Journal for Pharmaceutical Research Scholars (IJPRS), 3(2): 188- 197.
Saxena, K.B., Ravikoti, V.K. and Sultana, R. 2010. Quality nutrition through pigeonpea—a review. HEALTH 2, 1335-1344.
Sarmadi, B. H. & Ismail, A. 2010. Antioxidative peptides from food proteins: A review. Peptides. 31:1949–1956.
Silpradit, K., Tadakittasaren, S., Rimkeeree, H., Winitchai, S & Haruthanasan, V. 2010. Optimization of rice bran protein hydrolysate production using alcalase. Asian Journal of Food and Agro-Industry, 3(02): 221- 231.
Solomon, S.G., Okomoda, V.D. & Onah, R.E., 2016, Nutritional profile of soaked Cajanus cajan (L.) Millsp. and its utilization as partial replacement for soybean meal in the diet of Clarias gariepinus (Burchell, 1822) fingerlings. Journal of Applied Ichthyology 33(3): 450-457.
Umayaparvathi, S., Meenakshi, S., Vimalraj, V. & Arumugam, M., 2014, Antioxidant activity and anticancer effect of bioactive peptide from enzymatic hydrolysate of oyster (Saccostrea cucullata). Biomedicine & Preventive Nutrition, 4: 343-353.
Yildirim, A., Mavi, A.& Kara, A.A., 2001, Determination of antioxidant and antimicrobial activities of Rumex crispus extracts. Journal of Agriculture and Food Chemistry 49:4083–4089.
Yu, H.C. & Tan, F.J., 2017, Optimization of ultrasonic-assisted enzymatic hydrolysis conditions for the production of antioxidant hydrolysates from porcine liver by using response surface methodology. Asian- Australasian Journal of Animal Sciences, 30 (11): 1612-1619.
Zheng, Y., Li, Y., Zhang, Y., Ruan, X. & Zhang, R., 2017, Purification, characterization, synthesis, in vitro ACE inhibition and in vivo antihypertensive activity of bioactive peptides derived from oil palm kernel glutelin-2 hydrolysates. . Journal of Functional Foods 28: 48-58.
Zou, T.B., He, T.P., Li, H.B., Tang, H.W. & Xia, E.Q., 2016, the Structure-Activity Relationship of the Antioxidant Peptides from Natural Proteins. Molecules, 21(1): 72. | ||
آمار تعداد مشاهده مقاله: 299 تعداد دریافت فایل اصل مقاله: 164 |