1- Amin S., Ghadiri H., Chen C., and Marschner P. 2016. Salt-affected soils, reclamation, carbon dynamics, and biochar: a review. Journal of Soils and Sediments 16(3): 939-953.
2- Arora A., Sairam R.K., and Srivastava G.C. 2002. Oxidative stress and antioxidative system in plants. Current Science 1227-1238.
3- Bano A., and Fatima M. 2009. Salt tolerance in Zea mays (L.) following inoculation with Rhizobium and Pseudomonas. Biology and Fertility of Soils 45(4): 405-413.
4- Bates L., Waldren R. and Teare I. 1973. Rapid determination of free proline for water-stress studies. Plant and Soil 39(1): 205-207.
5- Chen K., Kurgan L., and Rahbari M. 2007. Prediction of protein crystallization using collocation of amino acid pairs. Biochemical and Biophysical Research Communications 355(3): 764-769.
6- Dardipour A., Farshadi Rad A., and Cheap M.H. 2010. The effect of Azotobacter chrococoum and Azospirillum lipoferum on soil potassium release in soybean pots (Glycine max var. Williams). Journal of Agricultural Ecology 2(4): 599-593. (In Persian with English abstract)
7- Demin I.N., Deryabin A.N., Sinkevich M.S., and Trunova T.I. 2008. Insertion of cyanobacterial desA gene coding for 12-acyl-lipid desaturase increases potato plant resistance to oxidative stress induced by hypothermia. Russian Journal of Plant Physiology 55(5): 639-648.
8- DuBois M., Gilles K.A., Hamilton J.K., Rebers P.T., and Smith F. 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28(3): 350-356.
9- Ehdaie B., Alloush G. A., Madore M. A., and Waines, J. G. 2006. Genotypic variation for stem reserves and mobilization in wheat. Crop Science 46(5): 2093-2103.
10- Etesami H., and Beattie G.A. 2017. Plant-microbe interactions in adaptation of agricultural crops to abiotic stress conditions. Probiotics and Plant Health 163-200.
11- Ghorbanli M., Gafarabad M., Amirkian T., and Allahverdi Mamaghani M.B. 2013. Investigation of proline, total protein, chlorophyll, ascorbate and dehydroascorbate changes under drought stress in Akria and Mobil tomato cultivars. Iranian Journal of Plant Physiology 3(2): 651-658.
12- Kannenberg S.A., and Phillips R.P. 2017. Soil microbial communities’ buffer physiological responses to drought stress in three hardwood species. Oecologia 183(3): 631-641.
13- Keller F., and Ludlow M.M. 1993. Carbohydrates metabolism in drought– stressed leaves of pigeonpea (Cajanus cajana). Journal of Experimental Botany 44(8): 1351-1359.
14- Mayak S., Tirosh T., and Glick B.R. 2004. Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Science 166(2): 525-530.
15- Naidu B.P. 1998. Separation of sugars, polyols, proline analogues, and betaines in stressed plant extracts by high performance liquid chromatography and quantification by ultra violet detection. Functional Plant Biology 25(7): 793-800.
16- Numan M., Bashir S., Khan Y., Mumtaz R., Shinwari Z.K., Khan A.L., and Ahmed A.H. 2018. Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: a review. Microbiological Research 209: 21-32.
17- Rasouli Sedghiani M.H., Sadeghi Azad S., Brin M., Sepehr A. and Dolati B. 2016. The effect of silicate solubilizing bacteria on the release of potassium from the micaceous minerals and its uptake by maize. Journal of Soil Science 78: 89-102. (In Persian with English abstract)
18- Sandhya V., Ali S.Z., Grover M., Reddy G., and Venkateswarlu B. 2010. Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant Growth Regulation 62(1): 21-30.
19- Smirnoff N., and Cumbes Q.J. 1989. Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28(4): 1057-1060.
20- Subramanian P., Mageswari A., Kim K., Lee Y., and Sa T. 2015. Psychrotolerant endophytic Pseudomonas sp. strains OB155 and OS261 induced chilling resistance in tomato plants (Solanum lycopersicum Mill.) by activation of their antioxidant capacity. Molecular Plant-Microbe Interactions 28(10): 1073-1081.
21- Valencia-Cantero E., Hernández-Calderón E., Velázquez-Becerra C., López-Meza J.E., Alfaro-Cuevas R., and López-Bucio J. 2007. Role of dissimilatory fermentative iron-reducing bacteria in Fe uptake by common bean (Phaseolus vulgaris L.) plants grown in alkaline soil. Plant and Soil 291(1-2): 263-273.
22- Vranova V., Rejsek K., Skene K. R., and Formanek P. 2011. Non-protein amino acids: plant, soil and ecosystem interactions. Plant and Soil 342(1-2): 31-48.
23- Xiao-Hui F., Zhang S.A., Xiao-Dan M., Yun-Cong L., Yu-Qing F., and Zhi-Guang L. 2017. Effect of PGPR and N source on plant growth and N, P uptake by tomato grown in calcareous soils. Pedosphere 27(6): 1027-1036.
24- Xie H., Pasternak J., and Glick B.R. 1996. Isolation and characterization of mutants of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2 that overproduce indoleacetic acid. Current Microbiology 32(2): 67-71.
25- Zhang C., and Kong F. 2014. Isolation and identification of potassium-solubilizing bacteria from tobacco rhizospheric soil and their effect on tobacco plants. Applied Soil Ecology 82: 18-25.
26- Zorb C., Senbayram M., and Peiter E. 2014. Potassium in agriculture–status and perspectives. Journal of Plant Physiology 171(9): 656-669.