- Achour, Y., Boumezbeur, A., Hadji, R., Chouabbi, A., Cavaleiro, V., & Bendaoud, E. A. (2017). Landslide susceptibility mapping using analytic hierarchy process and information value methods along a highway road section in Constantine, Algeria. Arabian Journal of Geosciences, 10(8), 194. https://doi.org/10.1007/s12517-017-2980-6.
- Akgun, A. (2012). A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: a case study at İzmir, Turkey. Landslides, 9(1), 93-106. https://doi.org/10.1007/s10346-011-0283-7.
- Ambrosi, C., Strozzi, T., Scapozza, C., & Wegmüller, U. (2018). Landslide hazard assessment in the Himalayas (Nepal and Bhutan) based on Earth-Observation data. Engineering Geology, 237, 217-228. https://doi.org/10.1016/j.enggeo.2018.02.020.
- Arab Ameri, A., Rezaei, Kh., & Shirani, K. (2018). Zoning and landslide risk assessment using models of reliability factor, surface density and hierarchical analysis (Case study: Vanak Basin, Isfahan Province). Journal of Geographical Space, 18 (62), 116-93. [In Persian] https://www.sid.ir/fa/journal/ViewPaper.aspx?ID=490212
- Bălteanu, D., Chendeş, V., Sima, M., & Enciu, P. (2010). A country-wide spatial assessment of landslide susceptibility in Romania. Geomorphology, 124(3-4), 102-112. https:// doi.org/ 10.1016/ j.geomorph. 2010.03.005.
- Basharat, M., Shah, H. R., & Hameed, N. (2016). Landslide susceptibility mapping using GIS and weighted overlay method: a case study from NW Himalayas, Pakistan. Arabian Journal of Geosciences, 9(4), 1-19. https://doi.org/10.1007/s12517-016-2308-y.
- Blahut, J., van Westen, C. J., & Sterlacchini, S. (2010). Analysis of landslide inventories for accurate prediction of debris-flow source areas. Geomorphology, 119(1-2), 36-51. https:// doi.org/ 10.1016/ j.geomorph.2010.02.017.
- Bui, D. T., Tuan, T. A., Klempe, H., Pradhan, B., & Revhaug, I. (2016). Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides, 13(2), 361-378. https://doi.org/10.1007/s10346-015-0557-6.
- Chen, W., Pourghasemi, H. R., & Zhao, Z. (2017). A GIS-based comparative study of Dempster-Shafer, logistic regression and artificial neural network models for landslide susceptibility mapping. Geocarto International, 32(4), 367-385. https://doi.org/10.1080/10106049.2016.1140824.
- Chen, W., Shahabi, H., Shirzadi, A., Li, T., Guo, C., Hong, H., ... & Bin Ahmad, B. (2018). A novel ensemble approach of bivariate statistical-based logistic model tree classifier for landslide susceptibility Geocarto International, 33(12), 1398-1420. https:// doi.org/ 10.1080/ 10106049. 2018.1425738.
- Chen, W., Yan, X., Zhao, Z., Hong, H., Bui, D. T., & Pradhan, B. (2019). Spatial prediction of landslide susceptibility using data mining-based kernel logistic regression, naive Bayes and RBFNetwork models for the Long County area (China). Bulletin of Engineering geology and the Environment, 78(1), 247-266. https://doi.org/10.1007/s10064-018-1256-z.
- Choi, J., Oh, H. J., Lee, H. J., Lee, C., & Lee, S. (2012). Combining landslide susceptibility maps obtained from frequency ratio, logistic regression, and artificial neural network models using ASTER images and GIS. Engineering Geology, 124, 12-23. https://doi.org/10.1016/j.enggeo.2011.09.011.
- Das, I., Sahoo, S., van Westen, C., Stein, A., & Hack, R. (2010). Landslide susceptibility assessment using logistic regression and its comparison with a rock mass classification system, along a road section in the northern Himalayas (India). Geomorphology, 114(4), 627-637. https:// doi.org/ 10.1016/ j.geomorph. 2009.09.023.
- Das, I., Stein, A., Kerle, N., & Dadhwal, V. K. (2012). Landslide susceptibility mapping along road corridors in the Indian Himalayas using Bayesian logistic regression models. Geomorphology, 179, 116-125. https://doi.org/10.1016/j.geomorph.2012.08.004.
- Feizizadeh, B., & Blaschke, T. (2014). An uncertainty and sensitivity analysis approach for GIS-based multicriteria landslide susceptibility mapping. International Journal of Geographical Information Science, 28(3), 610-638. https://doi.org/10.1080/13658816.2013.869821.
- Ghimire, M. (2011). Landslide occurrence and its relation with terrain factors in the Siwalik Hills, Nepal: case study of susceptibility assessment in three basins. Natural hazards, 56(1), 299-320. https://doi.org/10.1007/s11069-010-9569-7.
- Goetz, J. N., Guthrie, R. H., & Brenning, A. (2011). Integrating physical and empirical landslide susceptibility models using generalized additive models. Geomorphology, 129(3-4), 376-386. https://doi.org/10.1016/j.geomorph.2011.03.001.
- Kanungo, D., Arora, M., Sarkar, S., & Gupta, R. (2012). Landslide Susceptibility Zonation (LSZ) Mapping–A Review.
- Kayastha, P., Dhital, M. R., & De Smedt, F. (2013). Evaluation and comparison of GIS based landslide susceptibility mapping procedures in Kulekhani watershed, Nepal. Journal of the Geological Society of India, 81(2), 219-231. https://doi.org/10.1007/s12594-013-0025-7.
- Kornejady, A., Ownegh, M., Rahmati, O., & Bahremand, A. (2018). Landslide susceptibility assessment using three bivariate models considering the new topo-hydrological factor: HAND. Geocarto International, 33(11), 1155-1185. https://doi.org/10.1080/10106049.2017.1334832.
- Lesiv, M., Laso Bayas, J. C., See, L., Duerauer, M., Dahlia, D., Durando, N., . . . Blyshchyk, V. (2019). Estimating the global distribution of field size using crowdsourcing. Global change biology, 25(1), 174-186. https://doi.org/10.1111/gcb.14492.
- Lin, L., Lin, Q., & Wang, Y. (2017). Landslide susceptibility mapping on a global scale using the method of logistic regression. Natural Hazards and Earth System Sciences, 17(8), 1411-1424. https://doi.org/10.5194/nhess-17-1411-2017.
- Mansooi, H., Vakili Ondrai, F., & Khatib, M. (2016). Landslide hazard zoning using AHP method and Boolean logic in Bagheran mountain (in the south of Birjand). Journal of New Findings in Applied Geology, 20, 61-49. [In Persian] https://nfag.basu.ac.ir/article_1692.html
- Meinhardt, M., Fink, M., & Tünschel, H. (2015). Landslide susceptibility analysis in central Vietnam based on an incomplete landslide inventory: Comparison of a new method to calculate weighting factors by means of bivariate statistics. Geomorphology, 234, 80-97. https:// doi.org/ 10.1016/ j.geomorph. 2014. 12.042.
- Moghimi, A., Bagheri Seyed Shokri, S., & Safar Rad, T. (1390/2012). Landslide risk zoning using entropy model (Case study: northwestern Zagros anticline). Journal of Natural Geography Research, 79, 90-77. [In Persian] https://jphgr.ut.ac.ir/article_24735.html
- Pirasteh, S., & Li, J. (2017). Probabilistic frequency ratio (PFR) model for quality improvement of landslide susceptibility mapping from LiDAR-derived DEMs. Geoenvironmental Disasters, 4(1), 19. https://doi.org/10.1186/s40677-017-0083-z.
- Pirasteh, S., Li, J., & Chapman, M. (2018). Use of LiDAR-derived DEM and a stream length-gradient index approach to investigation of landslides in Zagros Mountains, Iran. Geocarto International, 33(9), 912-926. https://doi.org/10.1080/10106049.2017.1316779.
- Pourghasemi, H. R., Mohammady, M., & Pradhan, B. (2012). Landslide susceptibility mapping using index of entropy and conditional probability models in GIS: Safarood Basin, Iran. Catena, 97, 71-84. https://doi.org/10.1016/j.catena.2012.05.005.
- Razak, K. A., & Mohamad, Z. (2015). Methodological framework for landslide hazard and risk mapping using advanced geospatial technologies. Paper presented at the Special Issue for the International Symposium on Multi-Hazard and Risk 2015 (ISMHR 2015), 23-24 March 2015, Universiti Teknologi Malaysia (UTM), Kuala Lumpur, Malaysia.
- Regmi, A. D., Devkota, K. C., Yoshida, K., Pradhan, B., Pourghasemi, H. R., Kumamoto, T., & Akgun, A. (2014). Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya. Arabian Journal of Geosciences, 7(2), 725-742. https://doi.org/10.1007/s12517-012-0807-z.
- Rezaei, J. (2015). Best-worst multi-criteria decision-making method. Omega, 53, 49–57. https://doi.org/10.1016/j.omega.2014.11.009.
- Safari, A. (2014). Analysis and evaluation of landslide vulnerability in mountainous areas of Tehran. Journal of Spatial Analysis of Environmental Hazards, 1(3), 29-44. [In Persian] https://jsaeh.khu.ac.ir/article-1-2346-fa.html
- Saffari, A., & Hashemi, M. (2017). Zoning of landslide susceptibility using entropy and fuzzy logic models (Case study: Kermanshah city). Journal of Natural Geography, 9(34), 43-62. [In Persian] http://jopg.iaularestan.ac.ir/article_531681.html
- Shahabi, H., Hashim, M., & Ahmad, B. B. (2015). Remote sensing and GIS-based landslide susceptibility mapping using frequency ratio, logistic regression, and fuzzy logic methods at the central Zab basin, Environmental Earth Sciences, 73(12), 8647-8668. https://doi.org/10.1007/s12665-015-4028-0.
- Shahabi, H., Khezri, S., Ahmad, B. B., & Hashim, M. (2014). Landslide susceptibility mapping at central Zab basin, Iran: a comparison between analytical hierarchy process, frequency ratio and logistic regression models. Catena, 115, 55-70. https://doi.org/10.1016/j.catena.2013.11.014.
- Singh, K., Mehrotra, A., & Pal, K. (2014). Landslide detection from satellite images using spectral indices and digital elevation model. Disaster Adv, 7(6), 25-32.
- Skilodimou, H. D., Bathrellos, G. D., Chousianitis, K., Youssef, A. M., & Pradhan, B. (2019). Multi-hazard assessment modeling via multi-criteria analysis and GIS: a case study. Environmental Earth Sciences, 78(2), https://doi.org/10.1007/s12665-018-8003-4.
- Skilodimou, H. D., Bathrellos, G. D., Koskeridou, E., Soukis, K., & Rozos, D. (2018). Physical and anthropogenic factors related to landslide activity in the Northern Peloponnese, Greece. Land, 7(3), 85. https://doi.org/10.3390/land7030085.
- Statistic Center of Iran. (2011). General Population and Housing Census of Zanjan Province. Zanjan: Statistical Center of Iran. [In Persian]
- Trinh, T., Wu, D., Huang, J., Luu, B., Nguyen, K., & Le, H. (2016). Application of the analytical hierarchy process (AHP) for landslide susceptibility mapping: A case study in Yen Bai province, Viet Nam. Paper presented at the Environmental Technology and Innovations: Proceedings of the 1st International Conference on Environmental Technology and Innovations (Ho Chi Minh City, Vietnam, 23-25 November 2016). https://doi.org/10.1016/j.cageo.2012.11.003.
- Wan, S., Lei, T., & Chou, T. (2010). A novel data mining technique of analysis and classification for landslide problems. Natural Hazards, 52(1), 211. https://doi.org/10.1007/s11069-009-9366-3.
- Zhang, G., Cai, Y., Zheng, Z., Zhen, J., Liu, Y., & Huang, K. (2016). Integration of the statistical index method and the analytic hierarchy process technique for the assessment of landslide susceptibility in Huizhou, China. Catena, 142, 233-244. https://doi.org/10.1016/j.catena.2016.03.028.
- Zhang, J., Gurung, D. R., Liu, R., Murthy, M. S. R., & Su, F. (2015). Abe Barek landslide and landslide susceptibility assessment in Badakhshan Province, Afghanistan. Landslides, 12(3), 597-609. https://doi.org/10.1007/s10346-015-0558-5.
- Zumpano, V., Pisano, L., Malek, Ž., Micu, M., Aucelli, P. P., Rosskopf, C. M., ... & Parise, M. (2018). Economic losses for rural land value due to landslides. Frontiers in Earth Science, 6, 97. https://doi.org/10.3389/feart.2018.00097.
|