1. Benmechernene, Z., Fernández-No, I., Quintela-Baluja, M., Böhme, K., Kihal, M., Calo-Mata, P., & Barros-Velázquez, J. (2014). Genomic and proteomic characterization of bacteriocin-producing leuconostoc mesenteroides strains isolated from raw camel milk in two southwest algerian arid zones. BioMed Research International, 2014, 853238. https://doi.org/10.1155/2014/853238
2. Bergh, F.V.D., & Engelbrecht, A.P. (2001). Effects of swarm size on cooperative particle swarm optimisers. Paper presented at the Proceedings of the 3rd annual conference on genetic and evolutionary computation.
3. Clerc, M., & Kennedy, J. (2002). The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE transactions on Evolutionary Computation, 6(1), 58-73.
4. Eberhart, R.C., Shi, Y., & Kennedy, J. (2001). Swarm intelligence: Elsevier.
5. Eckner, K., & Zottola, E. (1992). Partitioning of skim milk components as a function of ph, acidulant, and temperature during membrane processing. Journal of Dairy Science, 75(8), 2092-2097. https://doi.org/10.3168/jds.S0022-0302(92)77967-3
6. Grandison, A.S., Youravong, W., & Lewis, M.J. (2000). Hydrodynamic factors affecting flux and fouling during ultrafiltration of skimmed milk. Le Lait, 80(1), 165-174. https://doi.org/10.1051/lait:2000116
7. Hassl, M., JØrgensen, B., & Janhøj, T. (2011). Rennet gelation properties of ultrafiltration retentates from camel milk. Milchwissenschaft, 66(1), 80-84.
8. Juneja, M., & Nagar, S. (2016). Particle swarm optimization algorithm and its parameters: A review. Paper presented at the 2016 International Conference on Control, Computing, Communication and Materials (ICCCCM).
9. Kautake, M., Nabetani, H., & Matsuno, I. (1986). Influence of operation parameters on permeate flux in ultrafiltration of milks, technical research institute, snow brand milk products co. Ltd. Retrieved from
10. Kennedy, J. (1999). Small worlds and mega-minds: Effects of neighborhood topology on particle swarm performance. Paper presented at the Proceedings of the 1999 congress on evolutionary computation-CEC99 (Cat. No. 99TH8406).
11. Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. Paper presented at the Proceedings of ICNN'95-international conference on neural networks.
12. Krstić, D.M., Tekić, M.N., Carić, M.D., & Milanov, S. (2002). The effect of turbulence promoter on cross-flow microfiltration of skim milk. Journal of Membrane Science, 208(1-2), 303-314. https://doi.org/10.1016/S0376-7388(02)00308-3
13. Limsawat, P., & Pruksasri, S. (2010). Separation of lactose from milk by ultrafiltration. Asian Journal of Food and Agro-Industry, 3(2), 236-243. https://doi.org/ 10.1007/s12393-022-09330-2
14. Luo, X., Ramchandran, L., & Vasiljevic, T. (2015). Lower ultrafiltration temperature improves membrane performance and emulsifying properties of milk protein concentrates. Dairy science & technology, 95(1), 15-31. https://doi.org/ 10.1007/s13594-014-0192-3
15. Mehaia, M.A. (1996). Chemical composition of camel skim milk concentrated by ultrafiltration. International Dairy Journal, 6(7), 741-752. https://doi.org/10.1016/0958-6946(95)00063-1
16. Montgomery, D.C. (2017). Design and analysis of experiments: John wiley & sons.
17. Ng, K.S., et al. (2017). Mechanisms of flux decline in skim milk ultrafiltration: A review. Journal of Membrane Science, 523, 144-162. https://doi.org/10.1016/j.memsci.2016.09.036
18. Olariu, S., & Zomaya, A.Y. (2005). Handbook of bioinspired algorithms and applications: CRC Press.
19. Poli, R., Kennedy, J., & Blackwell, T. (2007). Particle swarm optimization. Swarm Intelligence, 1(1), 33-57.
20. Pompei, C., Resmini, P., & Peri, C. (1973). Skim milk protein recovery and purification by ultrafiltration influence of temperature on permeation rate and retention. Journal of Food Science, 38(5), 867-870.
21. Rao, H.R. (2002). Mechanisms of flux decline during ultrafiltration of dairy products and influence of ph on flux rates of whey and buttermilk. Desalination, 144(1-3), 319-324. https://doi.org/10.1016/S0011-9164(02)00336-3
22. Razavi, S.M., Alghooneh, A., & Behrouzian, F. (2017). Kinetic modelling of hydraulic resistance in colloidal system ultrafltration: Effect of physiochemical and hydrodynamic parameters. Journal of Membrane Science and Research, 3(4), 296-302. https://doi.org/10.22079/JMSR.2017.47339.1097
23. Razavi, S.M.A., Mousavi, S.M., & Mortazavi, S.A. (2003). Dynamic prediction of milk ultrafiltration performance: A neural network approach. Chemical Engineering Science, 58(18), 4185-4195. https://doi.org/10.1016/S0009-2509(03)00301-4
24. Saltelli, A. (2002). Sensitivity analysis for importance assessment. Risk analysis, 22(3), 579-590. https://doi.org/10.1111/0272-4332.00040
25. Shi, Y,. & Eberhart, R.C. (1998). Parameter selection in particle swarm optimization. Paper presented at the International conference on evolutionary programming.
26. Tenenhaus, M., et al. (2005). Pls methodology to study relationships between hedonic judgements and product characteristics. Food Quality and Preference, 16(4), 315-325. https://doi.org/10.1016/j.foodqual.2004.05.013
27. Wang, K.Y., & Chung, T.-S. (2005). The characterization of flat composite nanofiltration membranes and their applications in the separation of cephalexin. Journal of Membrane Science, 247(1-2), 37-50. https://doi.org/10.1016/j.memsci.2004.09.007
28. Yang, X.-S. (2010). Engineering optimization: An introduction with metaheuristic applications: John Wiley & Sons.
|