تعداد نشریات | 48 |
تعداد شمارهها | 1,599 |
تعداد مقالات | 17,552 |
تعداد مشاهده مقاله | 4,443,862 |
تعداد دریافت فایل اصل مقاله | 2,038,702 |
Applying the meshless Fragile Points method to solve the two-dimensional linear Schrodinger equation on arbitrary domains | ||
Iranian Journal of Numerical Analysis and Optimization | ||
مقالات آماده انتشار، اصلاح شده برای چاپ، انتشار آنلاین از تاریخ 15 اسفند 1400 اصل مقاله (1.32 MB) | ||
نوع مقاله: Research Article | ||
شناسه دیجیتال (DOI): 10.22067/ijnao.2022.72900.1063 | ||
نویسندگان | ||
Donya Haghighi؛ Saeid Abbasbandy ![]() ![]() ![]() | ||
Department of Applied Mathematics, Faculty of Science, Imam Khomeini International University, Qazvin, 34149-16818, Iran | ||
چکیده | ||
The meshless Fragile Points method (FPM) is applied to find the numerical solutions of the Schrödinger equation on arbitrary domains. This method is based on Galerkin’s weak-form formulation, and the generalized finite difference method has been used to obtain the test and trial functions. For partitioning the problem domain into subdomains, the Voronoi diagram has been applied. These functions are simple, local, and discontinuous polynomials. Because of the discontinuity of test and trial functions, FPM may be inconsistent. To deal with these inconsistencies, we use numerical flux corrections. Finally, numerical results are presented for some examples of domains with different geometric shapes to demonstrate accuracy, reliability, and efficiency. | ||
کلیدواژهها | ||
Fragile Points Method؛ Numerical Fluxes؛ Schrodinger equation؛ Voronoi Diagram | ||
آمار تعداد مشاهده مقاله: 140 تعداد دریافت فایل اصل مقاله: 22 |