تعداد نشریات | 48 |
تعداد شمارهها | 1,605 |
تعداد مقالات | 17,590 |
تعداد مشاهده مقاله | 4,531,542 |
تعداد دریافت فایل اصل مقاله | 2,091,185 |
Estimation of the regression function by Legendre wavelets | ||
Iranian Journal of Numerical Analysis and Optimization | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 18 اسفند 1400 | ||
نوع مقاله: Research Article | ||
شناسه دیجیتال (DOI): 10.22067/ijnao.2022.73876.1079 | ||
نویسندگان | ||
Mehdi Hamzehnejad ![]() ![]() | ||
1Department of Mathematics, Faculty of Science and Modern Technology, Graduate University of Advanced Technology, Kerman, Iran | ||
2Department of Applied Mathematics and Mahani Mathematical Research Center, Shahid Bahonar University of Kerman, Kerman, Iran | ||
چکیده | ||
In this paper, we estimate a function $f$ with $N$ independent observations by using Legendre wavelets operational matrices. The function $f$ is approximated with the solution of a special minimization problem. We introduce an explicit expression for the penalty term by Legendre wavelets operational matrices. Also, we obtain a new upper bound on the approximation error of a differentiable function f using the partial sums of the Legendre wavelets. The validity and ability of these operational matrices are shown by several examples of real-world problems with some constraints. An accurate approximation of the regression function is obtained by the Legendre wavelets estimator. Furthermore, the proposed estimation is compared with a non-parametric regression algorithm and the capability of this estimation is illustrated. | ||
کلیدواژهها | ||
Legendre wavelet؛ Operational matrix؛ Wavelet approximation؛ Regression function؛ Error analysis | ||
آمار تعداد مشاهده مقاله: 129 |