[1] Ahookhosh, M. Amini, K. and Bahrami, S. Two derivative-free projec-tion approaches for systems of large-scale nonlinear monotone equations, Numer. Algor. 64(2013), 21-42.
[2] Barzilai, J. and Borwein, J.M. Two point step size gradient method, IMA J. Numer. Anal. 8(1988),141-148.
[3] Birgin, E.G. and Martinez, J.M. A spectral conjugate gradient method for unconstrained optimization, Appl. Math. Optim. 43 (2001), 117-128.
[4] Dennis, J. and Mor ́e, J. Quasi-Newton methods, motivation and theory, SIAM Review, Soc. Ind. Appl. Math. 19(1)(1977), 46-89.
[5] Dirkse, S.P. and Ferris, M.C. A collection of nonlinear mixed complemen-tarity problems, Optim. Methods Softw. 5(1995)319-345.
[6] Dolan, E.D. and Moré, J.J. Benchmarking optimization software with performance profiles, Math. Program. 91(2002), 201-2013.
[7] Figueiredo, M. Nowak, R. and Wright, S.J. Gradient projection for sparse reconstruction, application to compressed sensing and other inverse prob-lems, IEEE J-STSP IEEE Press, Piscataway, NJ. (2007), 586-597.
[8] Fletcher, R. Practical method of Optimization, Volume 1: Unconstrained Optimization, 2nd ed., Wiley, New York, 1997
[9] Gao, P. and He, C. An efficient three-term conjugate gradient method for nonlinear monotone equations with convex constraints, Calcolo 55(53)(2018),1-17.
[10] Halilu, A.S. Majumder, A. Waziri, M.Y. Awwal, A.M. and Ahmed, K. On solving double direction methods for convex constrained monotone nonlinear equations with image restoration, Comput. Appl. Math. 40, 239 (2021).
[11] Halilu, A.S. Majumder, A. Waziri, M.Y. and Ahmed, K. Signal re-covery with convex constrained nonlinear monotone equations through conjugate gradient hybrid approach, Math. comput. Simulation, http://doi.org/10.1016/j.matcom.2021.03.020. (2021).
[12] Halilu, A.S. Majumder, A. Waziri, M.Y. Ahmed, K. and Awwal, A.M. Motion control of the two joint planar robotic manipulators through accel-erated Dai-Liao method for solving system of nonlinear equatiions, Eng. Comput. https://doi.org/10.1108/EC-06-2021-0317
[13] Hager, W.W. and Zhang, H. A new conjugate gradient method with guranteed descent and an efficient line search, SIAM J. Optim. 16 (2005), 170-192.
[14] Hestenes, M.R. and Stiefel, E.L. Methods of conjugate gradients for solv-ing linear systems, J. Res. Nat. Bur. Standards, 49(1952), 409-436.
[15] Hively, G.A. On a class of nonlinear integral equations arising in trans-port theory, SIAM J. Numer. Anal. 9 (1978), 787-792.
[16] Ibrahim, A.H. Deepho, J. Abubakar, A.B. Aremu, K.O. A Modified Liu-Storey-conjugate descent hybrid projection method for convex constrained nonlinear equations and image restoration, Numer. Alg. Cont. Optim. doi:10.3934/naco.2021022.
[17] Kelly, C. Iterative methods for optimization, Frontiers Appl. Math. 1999, DOI:10.1137/1.9781611970920 Corpus ID: 123596970.
[18] Koorapetse, M. Kaelo, P. An efficient hybrid conjugate gradient-based projection method for convex constrained nonlinear monotone equations, J. inter. math. 22 (6)(2019), 1031-1050.
[19] La Cruz, W. Martínez, J.M. and Raydan, M. Spectral residual method without gradient information for solving large-scale nonlinear systems, Theory and Experiments, Citeseer, Technical Report RT-04-08(2004).
[20] La Cruz, W. A Spectral algorithm for large-scale systems of nonlin-ear monotone equations, Numer. Algor. DOI 10.1007/s1107s-017-0299-8. (2017).
[21] Li, X. Shi, J. Dong, X. and Yu, J. A new conjugate gradient method based on Quasi–Newton equation for unconstrained optimization, J. Comput. Appl. Math. https://doi.org/10.1016/j.cam.2018.10.035
[22] Liu, Y. and Storey, C. Efficient generalized conjugate gradient algo-rithms, Part 1: Theory, J. Optim. Theory Appl. 69(1991), 129-137.
[23] Liu, J.K. and Li, S.J. A projection method for convex constrained monotone nonlinear equations with applications, Comput. Math. Appl. 70(10)(2015), 2442-2453.
[24] Meintjes, K. and Morgan, A.P. A methodology for solving chemical equi-librium systems, Appl. Math. Comput. 22(1987), 333-361.
[25] Mompati, S. and Kaelo, P. Globally convergent three-term conjugate gra-dient projection methods for solving nonlinear monotone equations, Arab. J. Math. 7(2018), 289-301.
[26] Muhammad, L. and Waziri, M.Y. An Alternative three-term conjugate gradient algorithm for systems of nonlinear equations, Intern. J. Math. Model. Comput. 07(02)(2017),145-157.
[27] Nakamura, W. Narushima, Y. and Yabe, H. Nonlinear conjugate gradi-ent methods with sufficient descent properties for unconstrained optimiza-tion., J. Ind. Manag. Optim. 9(3)(2013),595-619.
[28] Pang, J.S. Inexact Newton methods for the nonlinear complementarity problem, Math. Program. 36 (1986), 54-71.
[29] Polak, E. and Ribi ́ere, G. Note Sur la convergence de directions con-jugèes, Rev. Francaise Informat. Recherche Operationelle, 3e Ann`ee, 16 (1969), 35-43.
[30] Polyak, B.T. The conjugate gradient method in extreme problems, USSR Comp. Math. Math. Phys. 9 (1969), 94-112.
[31] Sabi’u, J. Shah, A. Waziri, M.Y. and Ahmed, K. Modified Hager-Zhang conjugate gradient methods via singular value analysis for solving mono-tone nonlinear equations with convex constraint, Int. J. Comput. Methods. hppt://doi.org/10.1142/S0219876220500437 (2020).
[32] Solodov, M.V. and Svaiter, B.F. A globally convergent inexact Newton method for systems of monotone equations, in: Reformulation: Nons-mooth, Piecewise Smooth, Semismooth and Smoothing Methods, Kluwer Academic Publishers, 1998, pp. 355-369.
[33] Sugiki, K. Narushima, Y. and Yabe, H. Globally convergent three-term conjugate gradient methods that use secant conditions and generate de-scent search directions for unconstrained optimization, J. Optim. Theory Appl. 153(2012), 733-757.
[34] Wang, C. Wang, Y. and Xu, C. A projection method for a system of nonlinear monotone equations with convex constraints, Math. Methods Oper. Res. 66(1)(2007), 33-46.
[35] Wang, X.Y. Li, X.J. and Kou, X.P. A self-adaptive three-term conju-gate gradient method for monotone nonlinear equations with convex con-straints, Calcolo DOI 10.1007/s10092-015-0140-5.
[36] Wang, Z. Li, P. Li, X. and Pham, H. A modified three-term type CD con-jugate gradient algorithm for unconstrained optimization problems, Hin-dawi Mathematical Problems in Engineering Volume 2020, Article ID 4381515, 14 pages https://doi.org/10.1155/2020/4381515.
[37] Waziri, M.Y. Ahmed, K. and Sabi’u, J. A family of Hager-Zhang conju-gate gradient methods for system of monotone nonlinear equations, Appl. Math. Comput. 361(2019), 645-660.
[38] Waziri, M.Y. Ahmed, K. and Sabi’u, J. A Dai-Liao conjugate gradient method via modified secant equation for system of nonlinear equations, Arab. J. Math. 9(2020), 443-457.
[39] Waziri, M.Y. Ahmed, K. and Sabi’u, Descent Perry conjugate gradient methods for systems of monotone nonlinear equations, Numer. Algor. 85(2020), 763-785.
[40] Waziri, M.Y. Ahmed, K. Sabi’u, J. and Halilu, A.S. Enhanced Dai-Liao conjugate gradient methods for systems of monotone nonlinear equations, SeMA J. 78(2020), 15-51.
[41] Waziri, M.Y. Usman, H. Halilu, A.S. and Ahmed, K. Modified matrix-free methods for solving systems of nonlinear equations, Optimization. 70(2021), 2321-2340
[42] Waziri, M.Y. and Ahmed, K. Two descent Dai-Yuan conjugate gradient methods for systems of monotone nonlinear equations, J. Sci. Comput. (2022) 90:36. https://doi.org/10.1007/s10915-021-01713-7.
[43] Waziri, M.Y. Ahmed, K. Halilu, A.S. Awwal, A.M. Modified Dai-Yuan iterative scheme for nonlinear systems and its Application, Numer. Alg. Control Optim. doi:10.3934/naco.2021044.
[44] Waziri, M.Y. Ahmed, K. and Halilu, A.S. Adaptive three-term family of conjugate residual methods for system of monotone nonlinear equations, Sao Paulo J. Math. Sci. https://doi.org/10.1007/s40863-022-00293-0
[45] Xiao, Y. Wang, Q. and Hu, Q. Non-smooth equations based method for l1-norm problems with applications to compressed sensing, Nonlinear Anal. Theory Methods Appl. 74(11)(2011), 3570-3577.
[46] Xiao, Y. and Zhu, H. A conjugate gradient method to solve convex con-strained monotone equations with applications in compressive sensing, J. Math. Anal. Appl. 405(1)(2013), 310-319.
[47] Yuan, G. Modified nonlinear conjugate gradient methods with suffi-cient descent property for large-scale optimization problems, Optim. Lett. 3(2009), 11-21.