- AOAC (Association of Official Analytical Chemists). (2005). Method of analysis Gaithersburg. AOAC International, Gaithersburg, MD, 1–38.
- Biedrzycka, E., & Bielecka, M. (2004). Prebiotic effectiveness of fructans of different degrees of polymerization. Trends in Food Science and Technology, 15(3–4), 170–175. https://doi.org/10.1016/j.tifs.2003.09.014. https://doi.org/10.1016/j.tifs.2003.09.014
- Blumenkrantz, N., & Asboe-Hansen, G. (1973). New method for quantitative determination of uronic acids. Analytical Biochemistry, 54(2), 484–489. https://doi.org/10.1016/0003-2697(73)90377-1
- Carvalho, A. F. U., Portela, M. C. C., Sousa, M. B., Martins, F. S., Rocha, F. C., Farias, D. F., & Feitosa, J. P. A. (2009). Physiological and physico-chemical characterization of dietary fibre from the green seaweed Ulva fasciata Delile. Brazilian Journal of Biology, 69(3), 969–977.
- Dawood, D. H., Darwish, M. S., El-Awady, A. A., Mohamed, A. H., Zaki, A. A., & Taher, M. A. (2021). Chemical characterization of Cassia fistula polysaccharide (CFP) and its potential application as a prebiotic in synbiotic preparation. RSC Advances, 11(22), 13329–13340.
- do Nascimento Santos, D. K. D., da Silva Barros, B. R., da Cruz Filho, I. J., Júnior, N. da S. B., da Silva, P. R., do Bomfim Nascimento, P. H., de Lima, M. do C. A., Napoleão, T. H., & de Melo, C. M. L. (2021). Pectin-like polysaccharide extracted from the leaves of Conocarpus erectus Linnaeus promotes antioxidant, immunomodulatory and prebiotic effects. Bioactive Carbohydrates and Dietary Fibre, 26, 100263. https://doi.org/10.1016/j.bcdf.2021.100263
- Elahi, M. Y., Kargar, H., Dindarlou, M. S., Kholif, A. E., Elghandour, M. M. Y., Rojas-Hernández, S., Odongo, N. E., & Salem, A. Z. M. (2017). The chemical composition and in vitro digestibility evaluation of almond tree (Prunus dulcis DA Webb syn. Prunus amygdalus; var. Shokoufeh) leaves versus hulls and green versus dry leaves as feed for ruminants. Agroforestry Systems, 91(4), 773–780. https://doi.org/10.1007/s10457-016-9964-5
- Firdaus, A., Nurul, M., Mustafa, S., Hashim, D., & Manap, Y. A. (2012). Prebiotic Activity of Polysaccharides Extracted from Gigantochloa Levis (Buluh beting) Shoots. Molecules, 17, 1635–1651. https://doi.org/10.3390/molecules17021635
- Gllibowski, P., & Bukowska, A. (2011). The effect of pH, temperature and heating time on inulin chemical stabilityH. Acta Scientiarum Polonorum Technologia Alimentaria, 10(2), 189–196. https://doi.org/10.1007/s00217-004-1098-8
- Grootaert, C., Delcour, J. A., Courtin, C. M., Broekaert, W. F., Verstraete, W., & Van de Wiele, T. (2007). Microbial metabolism and prebiotic potency of arabinoxylan oligosaccharides in the human intestine. Trends in Food Science & Technology, 18(2), 64–71. https://doi.org/10.1016/j.tifs.2006.08.004
- Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., Morelli, L., Canani, R. B., Flint, H. J., Salminen, S., Calder, P. C., & Sanders, M. E. (2014). Expert consensus document: The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology & Hepatology, 11(8), 506–514. https://doi.org/10.1038/nrgastro.2014.66
- Huang, F., Liu, H., Zhang, R., Dong, L., Liu, L., Ma, Y., Jia, X., Wang, G., & Zhang, M. (2019). Physicochemical properties and prebiotic activities of polysaccharides from longan pulp based on different extraction techniques. Carbohydrate Polymers, 206, 344–351. https://doi.org/10.1016/j.carbpol.2018.11.012
- Huebner, J., Wehling, R. L., Parkhurst, A., & Hutkins, R. W. (2008). Effect of processing conditions on the prebiotic activity of commercial prebiotics. International Dairy Journal, 18(3), 287–293. https://doi.org/10.1016/j.idairyj.2007.08.013
- Jain, S. K., Jain, A., Gupta, Y., & Ahirwar, M. (2007). Design and development of hydrogel beads for targeted drug delivery to the colon. AAPS PharmSciTech, 8(3), 34–41. https://doi.org/10.1208/pt0803056
- Jayamanohar, J., Devi, P. B., Kavitake, D., Priyadarisini, V. B., & Shetty, P. H. (2019). Prebiotic potential of water extractable polysaccharide from red kidney bean (Phaseolus vulgaris). Lwt, 101, 703–710. https://doi.org/10.1016/j.lwt.2018.11.089
- Luo, A., He, X., Zhou, S., Fan, Y., He, T., & Chun, Z. (2009). In vitro antioxidant activities of a water-soluble polysaccharide derived from Dendrobium nobile Lindl. extracts. International Journal of Biological Macromolecules, 45(4), 359–363. https://doi.org/10.1016/j.ijbiomac.2009.07.008
- Miles, A. A., Misra, S. S., & Irwin, J. O. (1938). The estimation of the bactericidal power of the blood. The Journal of Hygiene, 38(6), 732–749. https://doi.org/10.1017/S002217240001158X
- Nep, E. I., Sims, I. M., Morris, G. A., & Kontogiorgos, V. (2015). Evaluation of some important physicochemical properties of starch free grewia gum. Food Hydrocolloids, 15, 77–76. https://doi.org/10.1016/j.foodhyd.2015.02.016.
- Slavov, A., Panchev, I., Kovacheva, D., & Vasileva, I. (2016). Physico-chemical characterization of water-soluble pectic extracts from Rosa damascena, Calendula officinalis and Matricaria chamomilla wastes. Food Hydrocolloids, 61, 469–476. https://doi.org/10.1016/j.foodhyd.2016.06.006
- Tadayoni, M., Sheikh-Zeinoddin, M., & Soleimanian-Zad, S. (2015). Isolation of bioactive polysaccharide from acorn and evaluation of its functional properties. International Journal of Biological Macromolecules, 72, 179–184. https://doi.org/10.1016/j.ijbiomac.2014.08.015
- Taylor, P., Woisky, R. G., & Salatino, A. (2015). control Analysis of propolis : some parameters and procedures for chemical quality control. Journal of Apicultural Research, April, 37–41. https://doi.org/10.1080/00218839.1998.11100961
- Wang, X., Huang, M., Yang, F., Sun, H., Zhou, X., Guo, Y., Wang, X., & Zhang, M. (2015). Rapeseed polysaccharides as prebiotics on growth and acidifying activity of probiotics in vitro. Carbohydrate Polymers, 125, 232–240. https://doi.org/10.1016/j.carbpol.2015.02.040
- Wichienchot, S., Jatupornpipat, M., & Rastall, R. a. (2010). Oligosaccharides of pitaya (dragon fruit) flesh and their prebiotic properties. Food Chemistry, 120(3), 850–857. https://doi.org/10.1016/j.foodchem.2009.11.026
- Wichienchot, S., Thammarutwasik, P., Jongjareonrak, A., Chansuwan, W., Hmadhlu, P., Hongpattarakere, T., Itharat, A., & Ooraikul, B. (2011). Extraction and analysis of prebiotics from selected plants from southern Thailand. Sonklanakarin Journal of Science and Technology, 33(5), 517.
- Xie, J.-H., Liu, X., Shen, M. Y., Nie, S. P., Zhang, H., Li, C., Gong, D. M., & Xie, M. Y. (2013). Purification, physicochemical characterisation and anticancer activity of a polysaccharide from Cyclocarya paliurus leaves. Food Chemistry, 136(3), 1453–1460. https://doi.org/10.1016/j.foodchem.2012.09.078
- Zhu, J., Liu, W., Yu, J., Zou, S., Wang, J., Yao, W., & Gao, X. (2013). Characterization and hypoglycemic effect of a polysaccharide extracted from the fruit of Lycium barbarum L. Carbohydrate Polymers, 98(1), 8–16. https://doi.org/10.1016/j.carbpol.2013.04.057
- Zhu, W., Zhou, S., Liu, J., McLean, R. J. C., & Chu, W. (2020). Prebiotic, immuno-stimulating and gut microbiota-modulating effects of Lycium barbarum polysaccharide. Biomedicine & Pharmacotherapy, 121, 109591. https://doi.org/10.1016/j.biopha.2019.109591
|