- Abolghasemi Fakhri, L., Ghanbarzadeh, B., Dehghannia, J. Entezami, A.A. (2012). The effects of montmorillonite and cellulose nanocrystals on physical properties of carboxymethyl cellulose/polyvinyl alcohol blend films. Iranian Journal of Polymer Science and Technology (In Persian), 24 (6), 456-465.
- Almasi, H., Ghanbarzadeh, B., Pezeshki Najafabadi, A. 2010. Improving the physical properties of starch and starch – carboxymethyl cellulose composite biodegradable films. Iranian Journal of Food Science and Technology, (In Persian), 6 (3), 1-11.
- Almasi, H., Ghanbarzadeh, B., Dehghannya, J., Entezami, A., & Khosrowshahi Asl, A. (2015). Novel nanocomposites based on fatty acid modified cellulose nanofibers/poly(lactic acid): Morphological and physical properties. Food Packaging and Shelf Life, 5. https://doi.org/10.1016/j.fpsl.2015.04.003
- Angles, M. N., & Dufresne, A. (2001). Plasticized starch/tunicin whiskers nanocomposite materials. 2. Mechanical behavior. Macromolecules, 34(9), 2921-2931.
- (1995). Official Methods of Analysis, sixteenth ed. Association of Official Analytical Chemists, Arlington VA, USA.
- Asgar, M. A., Fazilah, A., Huda, N., Bhat, R., & Karim, A. (2010). Nonmeat Protein Alternatives as Meat Extenders and Meat Analogs. Comprehensive Reviews in Food Science and Food Safety, 9, 513–529. https://doi.org/10.1111/j.1541-4337.2010.00124.x
- ASTM. (1995a). Annual Book of ASTM Standards. Standard test methods for water vapor transmission of materials (Vol. Designation E 96-95). Philadelphia: American Society for Testing and Materials.
- (1995b). Standard test methods for tensile properties of thin plastic sheeting. D882–10 annual book of ASTM. Philadelphia, PA: American Society for Testing and Materials.
- Avérous, L., Fringant, C., & Moro, L. (2001). Plasticized starch-cellulose interactions in polysaccharide composites. Polymer, 42, 6565–6572. https://doi.org/10.1016/S0032-3861(01)00125-2
- Ayranci, E., & Tunc, S. (2001). The effect of fatty acid content on water vapour and carbon dioxide transmissions of cellulose-based films. Food Chemistry, 72, 231–236. https://doi.org/10.1016/S0308-8146(00)00227-2
- Ayranci, E., & Tunc, S. (2003). A method for the measurement of the oxygen permeability and the development of edible films to reduce the rate of oxidative reactions in fresh foods. Food Chemistry, 80, 423–431. https://doi.org/10.1016/S0308-8146(02)00485-5
- Boun, H. R., & Huxsoll, C. C. (1991). Control of Minimally Processed Carrot (Daucus carota) SurBOUN, H. R., & HUXSOLL, C. C. (1991). Control of Minimally Processed Carrot (Daucus carota) Surface Discoloration Caused by Abrasion Peeling. Journal of Food Science, 56(2), 416–418. https://doi.org/10.1111/j.1365-2621.1991.tb05293.x
- Bower, C. K., Avena-Bustillos, R., Olsen, C. W., Mchugh, T., & Bechtel, P. (2006). Characterization of Fish‐Skin Gelatin Gels and Films Containing the Antimicrobial Enzyme Lysozyme. Journal of Food Science, 71. https://doi.org/10.1111/j.1750-3841.2006.00031.x
- Chambi Mamani, H. N., & Grosso, C. (2006). Edible films produced with gelatin and casein cross-linked with transglutaminase. Food Research International, 39, 458–466. https://doi.org/10.1016/j.foodres.2005.09.009
- Cheng, L.-H., Karim, A., & Seow, C. C. (2008). Characterisation of composite films made of konjac glucomannan (KGM), carboxymethyl cellulose (CMC) and lipid. Food Chemistry, 107, 411–418. https://doi.org/10.1016/j.foodchem.2007.08.068
- Cherian, B., Leao, A., Souza, S., Costa, L. M., Molina de Olyveira, G., Samy, K., Nagarajan, E. R., & Thomas, S. (2011). Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications. Carbohydrate Polymers, 86, 1790–1798. https://doi.org/10.1016/j.carbpol.2011.07.009
- Choi, Y., & Simonsen, J. (2006). Cellulose Nanocrystal-Filled Carboxymethyl Cellulose Nanocomposites. Journal of Nanoscience and Nanotechnology, 6(3), 633–639. https://doi.org/10.1166/jnn.2006.132
- Cole, M., & Bergeson, L. (2007). Regulation of new forms of food packaging produced using nanotechnology. In Intelligent and Active Packaging for Fruits and Vegetables (pp. 289–306). https://doi.org/10.1201/9781420008678.ch15
- Dashipour, A., Razavilar, V., Hosseini, H., Shojaee-Aliabadi, S., German, J. B., Ghanati, K., Khakpour, M., & Khaksar, R. (2015). Antioxidant and antimicrobial carboxymethyl cellulose films containing Zataria multiflora essential oil. International Journal of Biological Macromolecules, 72, 606–613. https://doi.org/10.1016/J.IJBIOMAC.2014.09.006
- de Carvalho, R. A., & Grosso, C. R. F. (2004). Characterization of gelatin based films modified with transglutaminase, glyoxal and formaldehyde. Food Hydrocolloids, 18(5), 717–726. https://doi.org/https://doi.org/10.1016/j.foodhyd.2003.10.005
- Du, C. J., & Sun, D. W. (2004). Recent developments in the applications of image processing techniques for food quality evaluation. Trends in Food Science & Technology, 15(5), 230–249. https://doi.org/10.1016/J.TIFS.2003.10.006
- Ejaz, M., Arfat, Y. A., Mulla, M., & Ahmed, J. (2018). Zinc oxide nanorods/clove essential oil incorporated Type B gelatin composite films and its applicability for shrimp packaging. Food Packaging and Shelf Life, 15, 113–121. https://doi.org/10.1016/J.FPSL.2017.12.004
- Espitia, P. J. P., Du, W. X., de Jesús Avena-Bustillos, R., Soares, N. D. F. F., & McHugh, T. H. (2014). Edible films from pectin: Physical-mechanical and antimicrobial properties-A review. Food hydrocolloids, 35, 287-296. https://doi.org/10.1016/j.foodhyd.2013.06.005
- Farahnaky, A., Dadfar, S. M. M., & Shahbazi, M. (2014). Physical and mechanical properties of gelatin–clay nanocomposite. Journal of Food Engineering, 122, 78–83. https://doi.org/10.1016/J.JFOODENG.2013.06.016
- Farris, S., Schaich, K., Liu, L., Cooke, P., Piergiovanni, L., & Yam, K. (2011). Gelatin-pectin composite films from polyion-complex hydrogels. Food Hydrocolloids, 25. https://doi.org/10.1016/j.foodhyd.2010.05.006
- Gennadios, A., Weller, C. L., Hanna, M. A., & Froning, G. W. (1996). Mechanical and barrier properties of egg albumen films. Journal of Food Science, 61(3), 585–589. https://doi.org/10.1111/j.1365-2621.1996.tb13164.x
- Ghanbarzadeh, B., Almasi, H., & Entezami, A. A. (2010). Physical properties of edible modified starch/carboxymethyl cellulose films. Innovative Food Science & Emerging Technologies, 11(4), 697–702. https://doi.org/10.1016/J.IFSET.2010.06.001
- Gomez-Guillen, M., Ihl, M., Bifani, V., Silva Weiss, A. C., & Montero, P. (2007). Edible films made from tuna-fish gelatin with antioxidant extracts of two different murta ecotypes leaves (Ugni molinae Turcz). Food Hydrocolloids, 21, 1133–1143. https://doi.org/10.1016/j.foodhyd.2006.08.006
- Guerrero, P., Stefani, P. M., Ruseckaite, R. A., & de la Caba, K. (2011). Functional properties of films based on soy protein isolate and gelatin processed by compression molding. Journal of Food Engineering, 105(1), 65–72. https://doi.org/10.1016/J.JFOODENG.2011.02.003
- Guilbert, S. (1986). Technology and application of edible protective films. Technology and Application of Edible Protective Films, 371–393.
- Habibi, Y., & Dufresne, A. (2008). Highly Filled Bionanocomposites from Functionalised Polysaccharide Nanocrystals. Biomacromolecules, 9, 1974–1980. https://doi.org/10.1021/bm8001717
- Jordan, J., Jacob, K. I., Tannenbaum, R., Sharaf, M. A., & Jasiuk, I. (2005). Experimental trends in polymer nanocomposites—a review. Materials Science and Engineering: A, 393(1–2), 1–11. https://doi.org/10.1016/J.MSEA.2004.09.044
- Kaushik, A., Singh, M., & Verma, G. (2010). Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw. Carbohydrate Polymers, 82, 337–345. https://doi.org/10.1016/j.carbpol.2010.04.063
- Kawasumi, M. (2004). The discovery of polymer‐clay hybrids. Journal of Polymer Science Part A: Polymer Chemistry, 42, 819–824. https://doi.org/10.1002/pola.10961
- Klemm, D., Heublein, B., Fink, H.-P., & Bohn, A. (2005). Cellulose: Fascinating Biopolymer and Sustainable Raw Material. Angewandte Chemie International Edition, 44(22), 3358–3393. https://doi.org/10.1002/anie.200460587
- Kristo, E., & Biliaderis, C. (2007). Physical properties of starch nanocrystal reinforced pullulan film. Carbohydrate Polymers, 68, 146–158. https://doi.org/10.1016/j.carbpol.2006.07.021
- León, K., Mery, D., Pedreschi, F., & León, J. (2006). Color measurement in L∗a∗b∗ units from RGB digital images. Food Research International, 39(10), 1084–1091. https://doi.org/10.1016/J.FOODRES.2006.03.006
- Lim, G.-O., Jang, S.-A., & Song, K. (2010). Physical and antimicrobial properties of Gelidium corneum/nano-clay composite film containing grapefruit seed extract or thymol. Journal of Food Engineering, 98, 415–420. https://doi.org/10.1016/j.jfoodeng.2010.01.021
- Morais, J. P. S., Rosa, M. de F., de Souza Filho, M. de sá M., Nascimento, L. D., do Nascimento, D. M., & Cassales, A. R. (2013). Extraction and characterization of nanocellulose structures from raw cotton linter. Carbohydrate Polymers, 91(1), 229–235. https://doi.org/10.1016/J.CARBPOL.2012.08.010
- Mu, C., Guo, J., Li, X., Lin, W., & Li, D. (2012). Preparation and properties of dialdehyde carboxymethyl cellulose crosslinked gelatin edible films. Food Hydrocolloids, 27(1), 22–29. https://doi.org/10.1016/j.foodhyd.2011.09.005
- Nur Hazirah, M. A. S. P., Isa, M. I. N., & Sarbon, N. M. (2016). Effect of xanthan gum on the physical and mechanical properties of gelatin-carboxymethyl cellulose film blends. Food Packaging and Shelf Life, 9, 55–63. https://doi.org/10.1016/J.FPSL.2016.05.008
- Park, H. J., Weller, C. L., Vergano, P. J., & Testin, R. F. (1993). Permeability and Mechanical Properties of Cellulose-Based Edible Films. Journal of Food Science, 58(6), 1361–1364. https://doi.org/10.1111/j.1365-2621.1993.tb06183.x
- Patil, B., Bharath Kumar, B. R., Bontha, S., Balla, V. K., Powar, S., Hemanth Kumar, V., Suresha, S. N., & Doddamani, M. (2019). Eco-friendly lightweight filament synthesis and mechanical characterization of additively manufactured closed cell foams. Composites Science and Technology, 183, 107816. https://doi.org/https://doi.org/10.1016/j.compscitech.2019.107816
- Quilaqueo Gutiérrez, M., Echeverría, I., Ihl, M., Bifani, V., & Mauri, A. N. (2012). Carboxymethylcellulose-montmorillonite nanocomposite films activated with murta (Ugni molinae Turcz) leaves extract. Carbohydrate Polymers. https://doi.org/10.1016/j.carbpol.2011.09.040
- Reddy, J. P., & Rhim, J. W. (2014). Characterization of bionanocomposite films prepared with agar and paper-mulberry pulp nanocellulose. Carbohydrate Polymers, 110, 480–488. https://doi.org/10.1016/J.CARBPOL.2014.04.056
- Rhim, J. W., Wang, L. F., & Hong, S. I. (2013). Preparation and characterization of agar/silver nanoparticles composite films with antimicrobial activity. Food Hydrocolloids, 33(2), 327–335. https://doi.org/10.1016/J.FOODHYD.2013.04.002
- Romero-Bastida, C. A., Bello-Pérez, L. A., García, M. A., Martino, M. N., Solorza-Feria, J., & Zaritzky, N. E. (2005). Physicochemical and microstructural characterization of films prepared by thermal and cold gelatinization from non-conventional sources of starches. Carbohydrate Polymers, 60(2), 235–244. https://doi.org/10.1016/J.CARBPOL.2005.01.004
- Rouhi, J., Mahmud, S., Naderi, N., Ooi, C. H. R., & Mahmood, M. R. (2013). Physical properties of fish gelatin-based bio-nanocomposite films incorporated with ZnO nanorods. Nanoscale Research Letters, 8(1), 364. https://doi.org/10.1186/1556-276X-8-364
- Sahraee, S., Milani, J. M., Ghanbarzadeh, B., & Hamishehkar, H. (2017a). Effect of corn oil on physical, thermal, and antifungal properties of gelatin-based nanocomposite films containing nano chitin. LWT- Food Science and Technology, 76, 33–39. https://doi.org/10.1016/J.LWT.2016.10.028
- Sahraee, S., Milani, J. M., Ghanbarzadeh, B., & Hamishehkar, H. (2017b). Physicochemical and antifungal properties of bio-nanocomposite film based on gelatin-chitin nanoparticles. International Journal of Biological Macromolecules, 97, 373–381. https://doi.org/10.1016/J.IJBIOMAC.2016.12.066
- Segal, L., Creely, J. J., Martin, A. E., & Conrad, C. M. (1959). An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer. Textile Research Journal, 29(10), 786–794. https://doi.org/10.1177/004051755902901003
- Sekhon, B. (2010). Food nanotechnology–An overview. Nanotechnology, Science and Applications, 3, 1–15. https://doi.org/10.2147/NSA.S8677
- Shankar, S., Teng, X., Li, G., & Rhim, J.-W. (2015). Preparation, characterization, and antimicrobial activity of gelatin/ZnO nanocomposite films. Food Hydrocolloids, 45, 264–271. https://doi.org/10.1016/J.FOODHYD.2014.12.001
- Silva, M., Bierhalz, A., & Kieckbusch, T. (2009). Alginate and pectin composite films crosslinked with Ca2+ ions: Effect of the plasticizer concentration. Carbohydrate Polymers, 77, 736–742. https://doi.org/10.1016/j.carbpol.2009.02.014
- Thygesen, A., Oddershede, J., Lilholt, H., Thomsen, A. B., & Ståhl, K. (2005). On the determination of crystallinity and cellulose content in plant fibres. Cellulose, 12(6), 563–576. https://doi.org/10.1007/s10570-005-9001-8
- Tong, Q., Xiao, Q., & Lim, L.-T. (2008). Preparation and properties of pullulan–alginate–carboxymethylcellulose blend films. Food Research International, 41(10), 1007–1014. https://doi.org/10.1016/J.FOODRES.2008.08.005
- Turhan, K. N., & Şahbaz, F. (2004). Water vapor permeability, tensile properties and solubility of methylcellulose-based edible films. Journal of Food Engineering, 61(3), 459–466. https://doi.org/10.1016/S0260-8774(03)00155-9
- Turhan, K., Sahbaz, F., & Güner, A. (2001). A Spectrophotometric Study of Hydrogen Bonding in Methylcellulose‐based Edible Films Plasticized by Polyethylene Glycol. Journal of Food Science, 66, 59–62. https://doi.org/10.1111/j.1365-2621.2001.tb15581.x
- Xiaodong Cao, Hua Dong, and, & Li, C. M. (2007). New Nanocomposite Materials Reinforced with Flax Cellulose Nanocrystals in Waterborne Polyurethane. https://doi.org/10.1021/BM0610368
- Zahed Karkaj, S., Peighambardoust, S. J. (2018). Physical, mechanical and antibacterial properties of nanobiocomposite films bosed on carboxymethyl cellulose/nanoclay. Iranian Journal of Polymer Science and Technology (In Persian) 30 (6), 557-572.
|