- Cox, S., Abu-Ghannam, N., & Gupta, S. (2010). An assessment of the antioxidant and antimicrobial activity of six species of edible Irish seaweeds. International Food Research Journal, 17(1), 205-220. https://doi.org/10.21427/D7HC92.
- Duarte, M.E., Cardoso, M.A., Noseda, M.D., & Cerezo, A.S. (2001). Structural studies on fucoidans from the brown seaweed Sargassum stenophyllum. Carbohydrate Research, 333(4), 281-293. https://doi.org/10.1016/S0008-6215(01)00149-5.
- Yende, S.R., Harle, U.N., & Chaugule, B.B. (2014). Therapeutic potential and health benefits of Sargassum Pharmacognosy Reviews, 8(15), 1. https://doi.org/10.4103/0973-7847.125514.
- Latifi, A. M., Sadegh Nejad, E., & Babavalian, H. (2015). Comparison of extraction different methods of sodium alginate from brown alga Sargassum localized in the Southern of Iran. Journal of Applied Biotechnology Reports, 2(2), 251-255.
- Amini, F., Riahi, H., & Zolgharnain, H. (2013). Metal concentrations in Padina species and associated sediment from Nayband Bay and Bostaneh Port, northern coast of the Persian Gulf, Iran.
- Rohani-Ghadikolaei, K., Abdulalian, E., & Ng, W.K. (2012). Evaluation of the proximate, fatty acid and mineral composition of representative green, brown and red seaweeds from the Persian Gulf of Iran as potential food and feed resources. Journal of Food Science and Technology, 49(6), 774-780. https://doi.org/10.1007/s13197-010-0220-0.
- Devi, K.N., Kumar, T.T., & Balasubramanian, T. (2014). Antibacterial and antioxidant effects from seaweed, Sargassum wightii (Greville, 1848) against marine ornamental fish pathogens. Journal of Coastal Life Medicine, 2(10), 773-83.
- Kordjazi, M., Etemadian, Y., Shabanpour, B., & Pourashouri, P. (2019). Chemical composition antioxidant and antimicrobial activities of fucoidan extracted from two species of brown seaweeds (Sargassum ilicifolium and angustifolium) around Qeshm Island. Iranian Journal of Fisheries Sciences, 18(3), 457-475. https://doi.org/10.22092/IJFS.2018.11549.
- Hlila, M.B., Hichri, A.O., Mahjoub, M.A., Mighri, Z., & Mastouri, M. (2017). Antioxidant and antimicrobial activities of Padina pavonica and Enteromorpha from the Tunisian Mediterranean coast. Journal of Coastal Life Medicine, 5, 336-342.
- Vieitez, I., Maceiras, L., Jachmanián, I., & Alborés, S. (2018). Antioxidant and antibacterial activity of different extracts from herbs obtained by maceration or supercritical technology. The Journal of Supercritical Fluids, 133, 58-64. https://doi.org/10.1016/j.supflu.2017.09.025.
- Pezeshkpour, V., Khosravani, S.A., Ghaedi, M., Dashtian, K., Zare, F., Sharifi, A., & Zoladl, M. (2018). Ultrasound assisted extraction of phenolic acids from broccoli vegetable and using sonochemistry for preparation of MOF-5 nanocubes: Comparative study based on micro-dilution broth and plate count method for synergism antibacterial effect. Ultrasonics Sonochemistry, 40, 1031-1038. https://doi.org/10.1016/j.ultsonch.2017.09.001.
- Hameed, I.H., Hussein, H.J., Kareem, M.A., & Hamad, N.S. (2015). Identification of five newly described bioactive chemical compounds in methanolic extract of Mentha viridis by using gas chromatography-mass spectrometry (GC-MS). Journal of Pharmacognosy and Phytotherapy, 7(7), 107-125. https://doi.org/10.5897/JPP2015.0349.
- Papandreou, M.A., Dimakopoulou, A., Linardaki, Z.I., Cordopatis, P., Klimis-Zacas, D., Margarity, M., & Lamari, F.N. (2009). Effect of a polyphenol-rich wild blueberry extract on cognitive performance of mice, brain antioxidant markers and acetylcholinesterase activity. Behavioural Brain Research, 198(2), 352-358. https://doi.org/10.1016/j.bbr.2008.11.013.
- Chang, C.C., Yang, M.H., Wen, H.M., & Chern, J.C. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis, 10(3). https://doi.org/10.38212/2224-6614.2748.
- Brand-Williams, W., Cuvelier, M.E., & Berset, C.L.W.T. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food science and Technology, 28(1), 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5.
- Ellman, G.L., Courtney, K.D., Andres Jr, V., & Featherstone, R.M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7(2), 88-95. https://doi.org/10.1016/0006-2952(61)90145-9.
- Behbahani, B.A., Yazdi, F.T., Vasiee, A., & Mortazavi, S.A. (2018). Oliveria decumbens essential oil: Chemical compositions and antimicrobial activity against the growth of some clinical and standard strains causing infection. Microbial Pathogenesis, 114: 449-452. https://doi.org/10.1016/j.micpath.2017.12.033.
- Noshad, M., Hojjati, M., & Behbahani, B.A. (2018). Black Zira essential oil: Chemical compositions and antimicrobial activity against the growth of some pathogenic strain causing infection. Microbial Pathogenesis, 116, 153-157. https://doi.org/10.1016/j.micpath.2018.01.026.
- Ferrazzano, G.F., Scioscia, E., Sateriale, D., Pastore, G., Colicchio, R., Pagliuca, C., & Pagliarulo, C. (2017). In vitro antibacterial activity of pomegranate juice and peel extracts on cariogenic bacteria. BioMed Research International. https://doi.org/10.1155/2017/2152749.
- Abdel-Aal, E.I., Haroon, M., & Mofeed, J. (2015). “Successive solvent extraction and GC-MS analysis for the evaluation of the phytochemical constituents of the filamentous green Alga Spirogyra longata.” Egyptian Journal of Aquatic Research, 41(3), 233–46. https://doi.org/10.1016/j.ejar.2015.06.001.
- Sarpal, A.S., & Costa, I.C.R. (2016). Investigation of Biodiesel Potential of Biomasses of Microalgaes Chlorella, Spirulina and Tetraselmis by NMR and GC-MS Techniques. Journal of Biotechnology & Biomaterials, 06(01), 1–15. https://doi.org/10.1016/j.ejar.2015.06.001.
- Avula, S.G.C., Belovich, J.M., & Xu, Y. (2017). Determination of fatty acid methyl esters derived from Algae Scenedesmus dimorphus Biomass by GC–MS with one-step esterification of free fatty acids and transesterification of glycerolipids. Journal of Separation Science, 40(10), 2214–27. https://doi.org/10.1002/jssc.201601336
- Barbalace, M. C., Malaguti, Giusti, L., Lucacchini, A., Hrelia, S., & Angeloni, C. (2019). Anti-inflammatory activities of marine algae in neurodegenerative diseases. International Journal of Molecular Sciences, 20(12), https://doi.org/10.3390/ijms20123061.
- Boi, V.N., Dang, X. C., & Phan, T. K. V. (2016). Effects of extraction conditions over the Phlorotannin content and antioxidant activity of extract from brown algae Sargassum serratum (Nguyen Huu Dai 2004). Free Radicals and Antioxidants, 7(1), 115–22. https://doi.org/10.5530/fra.2017.1.17
- Chemat, F., Rombaut, N., Sicaire, A.G., Meullemiestre, A., Fabiano-Tixier, A.S., & Abert-Vian, M. (2017). Ultrasound assisted extraction of food and natural products. Mechanisms, Techniques, Combinations, Protocols and Applications. A Review.” Ultrasonics Sonochemistry, 34, 540–60. https://doi.org/10.1016/j.ultsonch.2016.06.035.
- Franco, D., Sineiro, J., Rubilar, M., Sánchez, Jerez, M., Pinelo, M., Costoya, N., & Núñez, M. J. (2008). Polyphenols from plant materials: extraction and antioxidant power. Electronic Journal of Environmental, Agricultural and Food Chemistry, 7(8), 3210–16.
- Fujii, T., Y. Gao, R., Sharma, E.L., Hu, DenBaars, S.P., & Nakamura, S. (2004). Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening. Applied Physics Letters, 84(6), 855–57. https://doi.org/10.1063/1.1645992
- Gaysinski, M., Ortalo-Magné, A., Thomas O.P., & Culioli, G. (2015). Springer Protocols, Natural Products from Marine Algae, 2, 207-223. https://doi.org/10.1007/978-1-4939-2684-8-13.
- Hielscher-Michael, S., Griehl, C., Buchholz, M., Ulrich Demuth, H., Arnold, N., & Ludger, A.W. (2016). Natural products from microalgae with potential against Alzheimer’s disease: Sulfolipids Are Potent Glutaminyl Cyclase inhibitors. Marine Drugs, 14(11), 203. https://doi.org/10.3390/md14110203.
- Hlila, M.B., Majouli, K., Jannet, H.B., Mahjoub, A., Mastouri, M., & Selmi, B. (2017). Antimicrobial activity of Tunisian Euphorbia paralias Asian Pacific Journal of Tropical Biomedicine, 7(7), 629–32. https://doi.org/10.1016/j.apjtb.2017.06.008.
- Kausalya, M., & Narasimha Rao, G. M. (2015). Antimicrobial activity of marine algae. Journal of Algal Biomass Utilization, 6(1), 78–87.
- Lin, H.W., Liu, C.W., Yang, D.J., Chen, C.C., Shih Yin, C., Jung Kai T., Tien Jye C., & Yuan Yen, C. (2017). Dunaliella salina alga extract inhibits the production of Interleukin-6, Nitric Oxide, and Reactive Oxygen species by regulating nuclear factor-ΚB/Janus Kinase/Signal Transducer and activator of transcription in Virus-infected RAW264.7 Cells. Journal of Food and Drug Analysis, 25(4), 908–18. https://doi.org/10.1016/j.jfda.2016.11.018
- Machu, L., Misurcova, L., Ambrozova, J.V., Orsavova, J., Mlcek, J., Sochor, J., & Jurikova, T. (2015). Phenolic content and antioxidant capacity in Algal food products. Molecules, 20(1), 1118–33. https://doi.org/10.3390/molecules20011118
- Mekinić, I. G., Skroza, D., Šimat, V., Hamed, I., Čagalj, M., & Perković, Z.P. (2019). Phenolic content of brown algae (Pheophyceae) species: extraction, identification, and quantification. Biomolecules, 9(6), 244. https://doi.org/10.3390/biom9060244.
- Moein, S., Moein, M., Ebrahimi, N., Farmani, F., Sohrabipour, J., & Rabiei, R. (2015). Extraction and determination of protein content and antioxidant properties of ten algae from Persian Gulf. International Journal of Aquatic Science, 6(2), 29–38.
- Olasehinde, T. A., Olaniran, A. O., & Okoh, A. I. (2019). Macroalgae as a valuable source of naturally occurring bioactive compounds for the treatment of Alzheimer’s disease. Marine Drugs, 17(11), 609. https://doi.org/10.3390/md17110609.
- Olasehinde, T.A., Olaniran, A.O., Okoh, A.I., & Koulen, P. (2017). Therapeutic potentials of microalgae in the treatment of Alzheimer’s disease. Molecules, 22(3), 480. https://doi.org/10.3390/molecules22030480.
- Otero, P., Quintana, S. E., Reglero, G., Fornari, T., & García-Risco, R. M. (2018). Pressurized liquid extraction (PLE) as an innovative green technology for the effective enrichment of Galician algae extracts with high quality fatty acids and antimicrobial and antioxidant properties. Marine Drugs, 16(5), 156. https://doi.org/10.3390/md16050156.
- Patil, P.D., Dandamudi, K.P.R., Wang, J., Deng, Q., & Deng, S. (2018). Extraction of bio-oils from Algae with supercritical carbon dioxide and co-solvents. Journal of Supercritical Fluids, 135, 60–68. https://doi.org/10.1016/j.supflu.2017.12.019.
- Rathnayake, A.U., Abuine, R., Kim, Y.J., & Byun, H.G. (2019). Anti-Alzheimer’s materials isolated from marine bio-resources: a review. Current Alzheimer Research, 16(10), 895–906. https://doi.org/10.2174/1567205016666191024144044.
- Silva, A., Silva, S.A., Carpena, M., Garcia-Oliveira, P., Gullón, P., Barroso, M.F., Prieto, M.A., & Simal-Gandara, J. (2020). Macroalgae as a source of valuable antimicrobial compounds: extraction and applications. Antibiotics, 9(10), 1–41. https://doi.org/10.3390/antibiotics9100642.
- Uysal, S., Aktumsek, A., Picot, C.M.N., Sahan, A., Mollica, A., Zengin, G., & Mahomoodally, M.F. (2017). A comparative: in vitro and in silico study of the biological potential and chemical fingerprints of Dorcycinum pentapyllum Haussknechtii using three extraction procedures. New Journal of Chemistry, 41(22), 13952–60. https://doi.org/10.1039/C7NJ03497K.
- Varshney, P., Beardall, J., Bhattacharya, S., & Wangikar, P.P. (2018). Isolation and biochemical characterisation of two thermophilic green algal species- asterarcys Quadricellulare and Chlorella Sorokiniana, which are tolerant to high levels of carbon dioxide and nitric oxide. Algal Research, 30, 28–37. https://doi.org/10.1016/j.algal.2017.12.006.
- Wen, C., Zhang, J., Zhang, H., Dzah, C. S., Zandile, M., Duan, Y., Ma, H., & Luo, X. (2018). Advances in ultrasound assisted extraction of bioactive compounds from cash crops – a review. Ultrasonics Sonochemistry, 48(May), 538–49. https://doi.org/10.1016/j.ultsonch.2018.07.018.
|