- Abdullah, A.H.D., Fikriyyah, A.K., Putri, O.D., & Asri, P.P.P. (2019). Fabrication and characterization of poly lactic acid (PLA)-starch based bioplastic composites. IOP Conference Series: Materials Science and Engineering, https://doi.org/10.1016/j.polymertesting.2023.108000
- Arham, R., Salengke, S., Metusalach, M., & Mulyati, M. (2018). Optimization of agar and glycerol concentration in the manufacture of edible film. International Food Research Journal, 25(5), 1845-1851.
- Basumatary, K., Daimary, P., Das, S.K., Thapa, M., Singh, M., Mukherjee, A & .Kumar, S. (2018). Lagerstroemia speciosa fruit-mediated synthesis of silver nanoparticles and its application as filler in agar based nanocomposite films for antimicrobial food packaging. Food Packaging and Shelf Life, 17, 99-106. https://doi.org/10.1016/j.fpsl.2018.06.003
- da Rocha, M., de Souza, M.M., & Prentice, C. (2018). Biodegradable films: An alternative food packaging [Interview]. Elsevier. https://doi.org/10.1016/B978-0-12-811516-9.00009-9
- Fakhouri, F.M., Costa, D., Yamashita, F., Martelli, S.M., Jesus, R.C., Alganer, K., Collares-Queiroz, F.P., & Innocentini-Mei, L.H. (2013). Comparative study of processing methods for starch/gelatin films. Carbohydrate Polymers, 95(2), 681-689. https://doi.org/10.1016/j.carbpol.2013.03.027
- Fakhouri, F.M., Martelli, S.M., Bertan, L.C., Yamashita, F., Mei, L.H.I., & Queiroz, F.P.C. (2012). Edible films made from blends of manioc starch and gelatin–Influence of different types of plasticizer and different levels of macromolecules on their properties. LWT, 49(1), 149-154. https://doi.org/10.1016/j.lwt.2012.04.017
- Ganesan, A.R., Shanmugam, M., Palaniappan, S., & Rajauria, G. (2018). Development of edible film from Acanthophora spicifera: Structural, rheological and functional properties. Food Bioscience, 23, 121-128. https://doi.org/10.1016/j.fbio.2017.12.009
- Haghighi, H., Gullo, M., La China, S., Pfeifer, F., Siesler, H.W., Licciardello, F., & Pulvirenti, A. (2021). Characterization of bio-nanocomposite films based on gelatin/polyvinyl alcohol blend reinforced with bacterial cellulose nanowhiskers for food packaging applications. Food Hydrocolloids, 113, 106454. https://doi.org/10.1016/j.foodhyd.2020.106454
- Hasan, M., & Rahmayani, R.F.I., (2018). Bioplastic from chitosan and yellow pumpkin starch with castor oil as plasticizer. IOP Conference Series: Materials Science and Engineering,(Vol. 333,p, 012087). IOP Publishing.
- Hernández, V., Ibarra, D., Triana, J.F., Martínez-Soto, B., Faúndez, M., Vasco, D.A., Gordillo, L., Herrera, F., García-Herrera, C., & Garmulewicz, A. (2022). Agar biopolymer films for biodegradable packaging: A reference dataset for exploring the limits of mechanical performance. Materials, 15(11), 3954. https://doi.org/10.3390/ma15113954
- Hii, S.-L., Lim, J.-Y., Ong, W.-T., & Wong, C.-L. (2016). Agar from Malaysian red seaweed as potential material for synthesis of bioplastic film. Journal of Engineering Science and Technology, 11, 1-15.
- Hong, S.-I., Cho, Y., & Rhim, J.-W. (2021). Effect of agar/AgNP composite film packaging on refrigerated beef loin quality. Membranes, 11(10), 750. https://doi.org/10.3390/membranes11100750
- Kumar, S., Boro, J.C., Ray, D., Mukherjee, A., & Dutta, J. (2019). Bionanocomposite films of agar incorporated with ZnO nanoparticles as an active packaging material for shelf life extension of green grape. Heliyon, 5(6), e01867. https://doi.org/10.1016%2Fj.heliyon.2019.e01867
- Kumar, S., Shukla, A., Baul, P.P., Mitra, A., & Halder, D. (2018). Biodegradable hybrid nanocomposites of chitosan/gelatin and silver nanoparticles for active food packaging applications. Food Packaging and Shelf Life, 16, 178-184. https://doi.org/10.1016/j.fpsl.2018.03.008
- Kumar, V., & Fotedar, R. (2009). Agar extraction process for Gracilaria cliftonii (Withell, Millar, & Kraft, 1994). Carbohydrate Polymers, 78, 813-819. https://doi.org/10.1016/j.carbpol.2009.07.001
- Lee, J.-S., Choi, I., & Han, J. (2021). Mathematical modeling of cinnamon (Cinnamomum verum) bark oil release from agar/PVA biocomposite film for antimicrobial food packaging: The effects of temperature and relative humidity. Food Chemistry, 130306. https://doi.org/10.1016/j.foodchem.2021.130306
- Madera-Santana, T., Freile-Pelegrín, Y., & Azamar-Barrios, J. (2014). Physicochemical and morphological properties of plasticized poly (vinyl alcohol)–agar biodegradable films. International Journal of Biological Macromolecules, 69, 176-184. https://doi.org/10.1016/j.ijbiomac.2014.05.044
- Madera-Santana, T.J., Robledo, D., & Freile-Pelegrín, Y. (2011). Physicochemical properties of biodegradable polyvinyl alcohol–agar films from the red algae Hydropuntia cornea. Marine Biotechnology, 13(4), 793-800. https://doi.org/10.1016/j.ijbiomac.2020.02.158
- Madera‐Santana, T., Misra, M., Drzal, L., Robledo, D., & Freile‐Pelegrin, Y. (2009). Preparation and characterization of biodegradable agar/poly (butylene adipate‐co‐terephatalate) composites. Polymer Engineering & Science, 49(6), 1117-1126. https://doi.org/10.1002/pen.21389
- Marichelvam, M.K., Jawaid, M., & Asim, M. (2019). Corn and rice starch-based bio-plastics as alternative packaging materials. Fibers, 7(4), 32. https://doi.org/10.3390/fib7040032
- Marichelvam, M., Manimaran, P., Sanjay, M., Siengchin, S., Geetha, M., Kandakodeeswaran, K., Boonyasopon, P., & Gorbatyuk, (2022). Extraction and development of starch-based bioplastics from Prosopis juliflora Plant: Eco-friendly and sustainability aspects. Current Research in Green and Sustainable Chemistry, 5, 100296. https://doi.org/10.1016/j.crgsc.2022.100296
- Martínez-Sanz, M., Gómez-Mascaraque, L.G., Ballester, A.R., Martínez-Abad, A., Brodkorb, A., & López-Rubio, A. (2019). Production of unpurified agar-based extracts from red seaweed Gelidium sesquipedale by means of simplified extraction protocols. Algal Research, 38, 101420. https://doi.org/10.1016/j.algal.2019.101420
- Mathew, S., Mathew, J., & Radhakrishnan, E. (2019). Polyvinyl alcohol/silver nanocomposite films fabricated under the influence of solar radiation as effective antimicrobial food packaging material. Journal of Polymer Research, 26(9), 1-10. https://doi.org/10.1007/s10965-019-1888-0
- Mensi, F. (2019). Agar yield from R-phycoerythrin extraction by-product of the red alga Gracilaria verrucosa. Journal of Applied Phycology, 31(1), 741-75 https://doi.org/10.1007/s10811-018-1533-z.
- Nguyen, T.T., Nguyen, T.-T.H., Pham, B.-T.T., Van Tran, T., Bach, L.G., Thi, P.Q.B., & Thuc, C.H. (2021). Development of poly (vinyl alcohol)/agar/maltodextrin coating containing silver nanoparticles for banana (Musa acuminate) preservation. Food Packaging and Shelf Life, 29, 100740. https://doi.org/10.1016/j.fpsl.2021.100740
- Orsuwan, A., Shankar, S., Wang, L.-F., Sothornvit, R., & Rhim, J.-W. (2016). Preparation of antimicrobial agar/banana powder blend films reinforced with silver nanoparticles. Food Hydrocolloids, 60, 476-485. https://doi.org/10.1016/j.foodhyd.2016.04.017
- Rhim, J.-W. (2011). Effect of clay contents on mechanical and water vapor barrier properties of agar-based nanocomposite films. Carbohydrate Polymers, 86(2), 691-699. https://doi.org/10.1016/j.carbpol.2011.05.010
- Rhim, J., Wang, L., & Hong, S. (2013). Preparation and characterization of agar/silver nanoparticles composite films with antimicrobial activity. Food Hydrocolloids, 33(2), 327-335. https://doi.org/10.1016/j.foodhyd.2013.04.002
- Samadi, N., Sabzi, M., & Babaahmadi, M. (2018). Self-healing and tough hydrogels with physically cross-linked triple networks based on Agar/PVA/Graphene. International Journal of Biological Macromolecules, 107, 2291-2297. https://doi.org/10.1016/j.ijbiomac.2017.10.104
- Sasuga, K., Yamanashi, T., Nakayama, S., Ono, S., & Mikami, K. (2017). Optimization of yield and quality of agar polysaccharide isolated from the marine red macroalga Pyropia yezoensis. Algal Research, 26, 123-130. https://doi.org/10.1016/j.algal.2017.07.010
- Shankar, S., & Rhim, J.-W. (2017). Preparation and characterization of agar/lignin/silver nanoparticles composite films with ultraviolet light barrier and antibacterial properties. Food Hydrocolloids, 71, 76-84. https://doi.org/10.1016/j.foodhyd.2017.05.002
- Shankar, S., Teng, X., & Rhim, J.-W. (2014). Properties and characterization of agar/CuNP bionanocomposite films prepared with different copper salts and reducing Carbohydrate Polymers, 114, 484-492. https://doi.org/10.1016/j.carbpol.2014.08.036
- Soleimani, S., Yousefzadi, M., Nezhad, S.B.M., Pozharitskaya, O.N., & Shikov, A.N. (2022). Evaluation of fractions extracted from Polycladia myrica: biological activities, UVR protective effect, and stability of cream formulation based on it. Journal of Applied Phycology, 34(3), 1763-1777. https://doi.org/10.1007/s10811-022-02705-2
- Sousa, A. M., Alves, V., Morais, S., Delerue-Matos, C., & Gonçalves, M.P. (2010). Agar extraction from integrated multitrophic aquacultured Gracilaria vermiculophylla: evaluation of a microwave-assisted process using response surface methodology. Bioresource technology, 101(9), 3258-3267. https://doi.org/10.1016/j.biortech.2009.12.061
- Spierling, S., Knüpffer, E., Behnsen, H., Mudersbach, M., Krieg, H., Springer, S., Albrecht, S., Herrmann, C., & Endres, H.-J. (2018) Bio-based plastics-A review of environmental, social and economic impact assessments. Journal of Cleaner Production, 185, 476-491. https://doi.org/10.1016/j.jclepro.2018.03.014
- Sudhakar, M.P., Magesh Peter, D., & Dharani, G. (2021). Studies on the development and characterization of bioplastic film from the red seaweed (Kappaphycus alvarezii). Environmental Science and Pollution Research, 28(26), 33899-33913. https://doi.org/10.1007/s11356-020-10010-z
- Suryanegara, L., Fatriasari, W., Zulfiana, D., Anita, S.H., Masruchin, N., Gutari, S., & Kemala, T. (2021). Novel antimicrobial bioplastic based on PLA-chitosan by addition of TiO2 and ZnO. Journal of Environmental Health Science and Engineering, 19(1), 415-425. https://doi.org/10.1007/s40201-021-00614-z
- Susilawati, S., Rostini, I., Pratama, R.I., & Rochima, E. (2019). Characterization of bioplastic packaging from tapioca flour modified with the addition of chitosan and fish bone gelatin. World Scientific News, 135, 85-98.
- Wongphan, P., & Harnkarnsujarit, N. (2020). Characterization of starch, agar and maltodextrin blends for controlled dissolution of edible films. International Journal of Biological Macromolecules, 156, 80-93. https://doi.org/10.1016/j.ijbiomac.2020.04.056
- Wulandari, D., Hermiyati, I., Iswahyuni, I., & Tawarniate, A.Z. (2022). Production and characterization of gelatin from rabbit bone as bioplastics material by acid pre-treatment. World Rabbit Science, 30(1): 83-93.
- Yusoff, N.H., Pal, K., Narayanan, T., & de Souza, F.G. (2021). Recent trends on bioplastics synthesis and characterizations: Polylactic acid (PLA) incorporated with tapioca starch for packaging applications. Journal of Molecular Structure, 1232, 129954. https://doi.org/10.1016/j.molstruc.2021.129954
|