- Abidi, F., Girault, T., Douillet, O., Guillemain, G., Sintes, G., Laffaire, M. Ben Ahmed, H. Smiti, S., HucheThelier, L., & Leduc, N. (2013). Blue light effects on rose photosynthesis and photomorphogenesis. Journal of Plant Biology, 15, 67-74. https://doi: 10.1111/j.1438-8677.2012.00603.x
- Aliniaeifard, S., & van Meeteren, U. (2014). Natural variation in stomatal response to closing stimuli among Arabidopsis thaliana accessions after exposure to low VPD as a tool to recognise the mechanism of disturbed stomatal functioning. Journal of Experimental Botany, 65, 6529-6542. https://doi.org/10.1093/jxb/eru370
- Aliniaeifard, S., & van Meeteren, U. (2016). Stomatal characteristics and desiccation response of leaves of cut chrysanthemum (Chrysanthemum morifolium) flowers grown at high air humidity. Scientia Horticulturae, 205, 84-89. https://doi.org/10.1016/j.scienta.2016.04.025
- Aliniaeifard, S., & Seifi kalhor, M. (2017). Effects of blue light on photosynthesis of Tradescantia virginiana plants grown in different VPDs. Journal of Plant Research (Iranian Journal of Biology), 30(2), 420-428.
- Aliniaeifard, S., Seif, M., Arab, M., Zare Mehrjerdi, M., Li, T., & Lastochkina, O. (2018). Growth and photosynthetic performance of Calendula officinalis under monochromatic red light. International Journal of Horticultural Science and Technology, 5, 123-132. https://doi.org/10.22059/ijhst.2018.261042.248
- Arve, L.E., Kruse, O.M.O., Tanino, K.K., Olsen, J.E., Futsæther, C., & Torre, S. (2015). Growth in continuous high air humidity increases the expression of CYP707A-genes and inhibits stomatal closure. Environmental and Experimental Botany, 115, 11-19.
- Bantis, F., Ouzounis, T., & Radoglou, K. (2016). Artificial LED lighting enhances growth characteristics and total phenolic content of Ocimum basilicum, but variably affects transplant success. Scientia Horticulturae, 198, 277-283. https://doi.org/10.1016/j.scienta.2015.11.014
- Bayat, L., Arab, M., Aliniaeifard, S., Seif, M., Lastochkina, O., & Li, T. (2018). Effects of growth under different light spectra on the subsequent high light tolerance in rose plants. AoB Plants, 10(5), 1-17. https://doi.org/10.1093/aobpla/ply052
- British (1980). H. M. S. Office. 2, London, 109-110 pp.
- Bugbee, B. (2016). In toward an optimal spectral quality for plant growth and development: The importance of radiation capture. Acta Horticulturae, 1134(1), 1-12.
- Carvalho, S.D., & Folta, K.M. (2014). Environmentally modified organisms expanding genetic potential with light. Critical Reviews in Plant Sciences, 33, 486-508. http://dx.doi.org/10.1080/07352689.2014.929929
- Chen, M., Chory, J., & Fankhauser, C. (2004). Light signal transduction in higher plants. Annual Review of Genetics, 38, 87-117. https://doi.org/10.1146/annurev.genet.38.072902.092259
- Davis, P.A., & Burns, C. (2016). Photobiology in protected horticulture. Journal of Food and Energy Security, 5, 223–238. https://doi.org/10.1002/fes3.97
- Dou, H., Niu, G., Gu, M., & Masabni, J. (2017). Effects of light quality on growth and phytonutrient accumulation of herbs under controlled environments. Horticulturae, 3(2), 36. http://dx.doi.org/10.3390/horticulturae3020036
- Cosgrove, D.J. (1981). Rapid suppression of growth by blue light: occurrence, time course, and general characteristics. Plant Physiology, 67, 584-590. https://doi.org/10.1104/pp.67.3.584
- Doheny-Adams, T., Hunt, L., Franks, P.J., Beerling, D.J., & Gray, J.E. (2012). Genetic manipulation of stomatal density influences stomatal size, plant growth and tolerance to restricted water supply across a growth carbon dioxide gradient. Philosophical Transactions of the Royal Society B: Biological Sciences, 367, 547-555. https://doi.org/10.1098%2Frstb.2011.0272
- Falqueto, A.R., da Silva Júnior, R.A., Gomes, M.T.G., Martins, J.P.R., Silva, D.M., & Partelli, F.L. (2017). Effects of drought stress on chlorophyll a fluorescence in two rubber tree clones. Scientia Horticulturae, 224, 238-243. https://doi.org/10.1016/j.scienta.2017.06.019
- Goncalves, JFC., Santos, UM., Nina, A., & Chevreuil, LR. (2007). Energetic flux and performance index in copaiba (Copaifera multijuga Hayna) and mahogany (Swietenia macrophylla King) seedling grown under two irradiance environments. Brazilian Journal of Plant Physiology, 19, 171-184.
- Hernandez, R., & Kubota, C. (2015). Physiological responses of cucumber seedlings under different blue and red photon flux ratios using LEDs. Environmental and Experimental Botany, 121(1), 66-74.
- Hogewoning, SW., Trouwborst, G., Maljaars, H., Poorter, H., van Ieperen, W., & Harbinson, J. (2010). Blue light dose responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. Journal of Experimental Botany, 61, 3107-3117. https://doi.org/10.1093/jxb/erq132.
- Hosseini, A., Mehrjerdi, M.Z., Aliniaeifard, S., & Seif, M. (2019). Photosynthetic and growth responses of green and purple basil plants under different spectral compositions. Physiology and Molecular Biology of Plants, 25, 741-752. https://doi.org/10.1007/s12298-019-00647-7
- Jordan, , Fromme, P., Witt, HT., Klukas, O., Saenger, W., & Krau, N. (2001). Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature, 411, 909-917. https://doi.org/10.1038/35082000
- Kalaji, H.M., Carpentier, R., Allakhverdiev, S.I., & Bosa, K. (2012). Fluorescence parameters as early indicators of light stress in barley. Journal of Photochemistry and Photobiology B: Biology, 112, 1-6. https://doi.org/10.1016/j.jphotobiol.2012.03.009
- Kalaji, H. M., Jajoo, A., Oukarroum, A., Brestic, M., Zivcak, M., Samborska, I.A., Cetner, M.D., Łukasik, I., Goltsev, V., & Ladle, R.J. (2016). Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiologiae Plantarum, 38, 102-111. http://dx.doi.org/10.1007/s11738-016-2113-y
- Kasajima, S.y., Inoue, N., Mahmud, R., & Kato, M. (2008). Developmental responses of wheat cv. Norin 61 to fluence rate of green light. Plant Production Science, 11, 76-81. https://doi.org/10.1626/pps.11.76
- Kim, S.J., Hahn, E.J., Heo, J.W., & Paek, K.Y. (2004). Effects of LEDs on net photosynthetic rate, growth and leaf stomata of chrysanthemum plantlets in vitro. Scientia Horticulturae, 101, 143-151. https://doi.org/10.1016/j.scienta.2003.10.003
- Kim, H.J., Lin, M.Y., & Mitchell, C.A. (2019). Light spectral and thermal properties govern biomass allocation in tomato through morphological and physiological changes. Journal of Environmental and Experimental Botany, 157, 228–240.
- Kinoshita, T., Doi, M., Suetsugu, N, Kagawa, T., Wada, M., & Shimazaki, K. (2001). Phot1 and phot2 mediate blue light regulation of stomatal opening. Nature, 414, 656-660. https://doi.org/10.1038/414656a
- Kinoshita, T., & Hayashi, Y. (2011). New insights into the regulation of stomatal opening by blue light and plasma membrane H (+) ATPase. International Review of Cell and Molecular Biology, 289, 89-115. https://doi.org/10.1016/B978-0-12-386039-2.00003-1
- Kozai, T., & Kubota, C. (2005). Photoautotrophic (Sugar-free Medium) Micropropagation as a New Micropropagation and Transplant Production System. Springer, Dordrecht.
- Li, G., Wan, S., Zhou, J., Yang, Z., & Qin, P. (2010). Leaf chlorophyll fluorescence, hyperspectral reflectance, pigments content, malondialdehyde and proline accumulation responses of castor bean (Ricinus communis) seedlings to salt stress levels. Industrial Crops and Products, 31(1), 13-19. http://dx.doi.org/10.1016/j.indcrop.2009.07.015
- Li, Y., Xin, G., Wei, M., Shi, Q., Yang, F., & Wang, X. (2017). Carbohydrate accumulation and sucrose metabolism responses in tomato seedling leaves when subjected to different light qualities. Scientia Horticulturae, 225, 490-497. http://dx.doi.org/10.1016/j.scienta.2017.07.053
- Liang, Y., Chen, H., Tang, M.J., Yang, P.F., & Shen, S.H. (2007). Responses of Jatropha curcas seedlings to cold stress: photosynthesis related proteins and chlorophyll fluorescence characteristics. Physiologia Plantarum, 131(3), 508-517. https://doi.org/10.1111/j.1399-3054.2007.00974.x
- Lu, C., & Vonshak, A. (1999). Photoinhibition in outdoor Spirulina platensis cultures assessed by polyphasic chlorophyll fluorescence transients. Journal of Applied Phycology, 11, 355-359.
- Lu, N., Maruo, T., Johkan, M., Hohjo, M., Tsukagoshi, S., Ito, Y., & Shinohara, Y. (2012). Effects of supplemental lighting with light-emitting diodes (LEDs) on tomato yield and quality of single-truss tomato plants grown at high planting density. Environmental Control in Biology, 50(1), 63-74.
- Lu, N., Maruo, T., Johkan, M., Hohjo, M., Tsukagoshi, S., Ito, Y., & Shinohara, Y. (2012). Effects of supplemental lighting with light-emitting diodes (LEDs) on tomato yield and quality of single-truss tomato plants grown at high planting density. Environmental Control in Biology, 50(1), 63-74. https://doi.org/10.2525/ecb.50.63
- Matsuda, R., Ohashi-Kaneko, K., Fujiwara, K., & Kurata, K. (2008). Effects of blue light deficiency on acclimation of light energy partitioning in PSII and CO2 assimilation capacity to high irradiance in Spinach leaves. Plant and Cell Physiology, 49, 664-670.
- Maxwell, K., & Johnson, GN. 2000. Chlorophyll fluorescence a practical guide. Journal of Experimental Botany, 51, 659-668. https://doi.org/10.1093/jxb/51.345.659
- Mehta, P., Jajoo, A., Mathur, S., & Bharti, S. (2010). Chlorophyll a flouresence study revealing effects of high salt stress on photosystem II in wheat leaves. Plant Physiology and Biochemistry, 48, 16-20. https://doi.org/10.1016/j.plaphy.2009.10.006
- Miao, L., Zhang, Y., Yang, X., Xiao, J., Zhang, H., Zhang, Z., Wang, Y., & Jiang, G., (2016). Colored light-quality selective plastic films affect anthocyanin content, enzyme activities, and the expression of flavonoid genes in strawberry (Fragaria× ananassa) fruit. Food Chemistry, 207, 93-100. https://doi.org/10.1016/j.foodchem.2016.02.077
- Mitchell, C., Both, AJ., Bourget, M., Burr, J., Kubota, C., Lopez, R., Morrow, R. & Runkle, E. (2012). LEDs: The future of greenhouse lighting! Horticultural, 52, 1-9.
- Mott, K.A. (2009). Opinion: Stomatal responses to light and CO2 depend on the mesophyll. Plant Cell Environment, 32, 1479-1486. https://doi.org/10.1111/j.1365-3040.2009.02022.x
- Nishimura, T., Zobayed, S.M.A., Kozai, T., & Goto, E. (2006). Effect of light quality of blue and red florescent lamps on growth of Hypericum perforatum (St. John’s wort). Shokubutsu Kankyo Kogaku, 18(3), 225-229. https://doi.org/10.2525/shita.18.225
- Olsen, RL., Pratt, RB., Gump, P., Kemper, A., & Tallman, G. (2002). Red light activates a chloroplast‐dependent ion uptake mechanism for stomatal opening under reduced CO2 concentrations in Vicia spp. New Phytologist, 153, 497-508. https://doi.org/10.1046/j.0028-646x.2001.00337.x
- Nozue, H., & Masao, G. (2018). Usefulness of Broad-Spectrum White LEDs to Envision Future Plant Factory. In: Kozai, T. (Ed), Smart Plant Factory, The Next Generation Indoor Vertical Farms. (pp.197-210.). Springer Nature Singapore.
- Ouzounis, T. Rosenqvist, E., & Ottosen, C. (2015). Spectral Effects of Artificial Light on Plant Physiology and Secondary Metabolism: A Review. HortScience, 50(8), 1128–1135. http://dx.doi.org/10.21273/HORTSCI.50.8.1128
- Ozfidan, C., Turkan, I., Sekmen, A.H., & Seckin, B. (2013). Time course analysis of ABA and non-ionic osmotic stress-induced changes in water status, chlorophyll fluorescence and osmotic adjustment in Arabidopsis thaliana wild-type (Columbia) and ABA deficient mutant (aba2). Environmental and Experimental Botany, 86, 44-51. https://doi.org/10.1016/j.envexpbot.2010.09.008
- Park, S. Y., Lee, J. G., Cho, H. S., Seong, E. S., Kim, H. Y., Yu, C. Y., & Kim, J. K. (2013). Metabolite profiling approach for assessing the effects of colored light-emitting diode lighting on the adventitious roots of ginseng (Panax ginseng A. Mayer). Plant Omics Journal, 6, 224-230.
- Parvanova, D., Popova, A., Zaharieva, I., Lambrev, P., Konstantinova, T., Taneva, S., Atanassov, A., Goltsev, V., & Djilianov, D. (2004). Low temperature tolerance of tobacco plants transformed to accumulate proline, fructans, or glycine betaine. Variable chlorophyll fluorescence evidence. Photosynthetica, 42, 179-185. https://doi: 10.1023/B:PHOT.0000040588.31318.0f
- Palvlov, P., & Ilieva, S. (1972). Some biochemical changes in early developmental stages of salvia sclarea affected by different illumination. Rasteniev Nauki, 10, 13-20.
- Ripley, B.S., Redfern, S.P., & Dames, J. (2004). Quantification of the photosynthetic performance of phosphorus-deficient Sorghum by means of chlorophyll-a fluorescence kinetics. South African Journal of Science, 100, 615-618.
- Ryu, J.H., Seo, K.S., Choi, G.L., Rha, E.S., Lee, S.C., Choi, S.K., Kong, S.Y., & Bae, C.H. (2012). Effects of LED light illumination on germination, growth and anthocyanin content of dandelion (Taraxacum officinale). The Korean Journal of Plant Resources, 25(6), 731-738. http://doi.org/10.7732/kjpr.2012.25.6.731
- Sabzalian, M.R., Heydarizadeh, P., Zahedi, M., Boroomand, A., Agharokh, M., Sahba, M.R., & Schoefs, B. (2014). High performance of vegetables, flowers, and medicinal plants in a red-blue LED incubator for indoor plant production. Agronomy for Sustainable Development, 34, 879-886.
- Saleh, M. (1972). Effect of light uponquantity and quality of Matricaria chamomilla oil. Planta Medica, 24(4), 337-340.
- Savvides, A., Fanourakis, D., & van Ieperen, W. (2012). Co-ordination of hydraulic and stomatal conductances across light qualities in cucumber leaves. Journal of Experimental Botany, 63, 1135-1143.
- Schuerger, A.C., Brown, C.S., & Stryjewski, E.C. (1997). Anatomical features of pepper plants (Capsicum annuum ) grown under red light-emitting diodes supplemented with blue or far-red light. Annals of Botany, 79, 273-282. https://doi.org/10.1006/anbo.1996.0341
- Shu, S., Yuan, L.Y., Guo, S.R., Sun, J., & Yuan, Y.H. (2013). Effects of exogenous spermine on chlorophyll fluorescence, antioxidant system and ultrastructure of chloroplasts in Cucumis sativus under salt stress. Plant Physiology and Biochemistry, 63, 209-216. https://doi.org/10.1016/j.plaphy.2012.11.028
- Slavik, B. (1974). Methods of Studying Plant Water Relations. Chapman and Hall, London.
- Srivastava, A., & Strasser, R.J. (1999). Greening of peas: parallel measurements of 77 K emission spectra, OJIP chlorophyll a fluorescence transient, period four oscillation of the initial fluorescence level, delayed light emission, and P700. Photosynthetica, 37, 365-392.
- Strasser, B.J. (1995). Measuring fast fluorescence transients to address environmental questions: the JIP test. Photosynthesis: from Light to Biosphere, 977-980. http://dx.doi.org/10.1007/978-94-009-0173-5_1142
- Strasser, RJ., Srivastava, A., & Tsimilli-Michael, M. (2000). The fluorescence transient as a tool to characterize and screen photosynthetic samples. Probing Photosynthesis: Mechanisms, Regulation and Adaptation, 445-483.
- Strasser, RJ., Tsimilli-Michael, M., Qiang, S., & Goltsev, V. (2010). Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1797(6-7), 1313-1326. https://doi.org/10.1016/j.bbabio.2010.03.008
- Stutte, G.W., Endey, S., & Skerritt, T. (2009). Photoregulation of bioprotectant content of red leaf lettuce with light-emitting diodes. Journal of HortiScience, 44, 79-82. http://doi.org/10.21273/HORTSCI.44.1.79
- Suetsugu, N., Takami, T., Ebisu, Y., Watanabe, H., Iiboshi, C., Doi, M., & Shimazaki, K. (2014). Guard cell chloroplasts are essential for blue light-dependent stomatal opening in Arabidopsis. PLoS One, 9, e108374. https://doi.org/10.1371/journal.pone.0108374
- Talbott, L.D., Nikolova, G., Ortiz, A., Shmayevich, I., & Zeiger, E. (2002). Green light reversal of blue-light-stimulated stomatal opening is found in a diversity of plant species. American Journal of Botany, 89, 366-368. https://doi.org/10.3732/ajb.89.2.366
- Taulavuori, K., Pyysalo, A., Taulavuori, E., & Julkunen-Tiitto, R., (2018). Responses of phenolic acid and flavonoid synthesis to blue and blue-violet light depends on plant species. Environmental and Experimental Botany, 150, 183-187. https://doi.org/10.1016/j.envexpbot.2018.03.016
- Trouwborst, G., Hogewoning, S.W., Van Kooten, O., Harbinson, J., & Van Ieperen, W., (2016). Plasticity of photosynthesis after the ‘red light syndrome’in cucumber. Environmental and Experimental Botany, 121, 75-82.
- Urbonaviciute, A., Samuoliene, G., Brazaityte, A., Ulinskaite, R., Jankauskiene, J., Duchovskis, P., & Zukauskas, A. (2008). The possibility to control the metabolism of green vegetables and sprouts using light emitting diode illumination. Sodininkyste ir Darzininkyste, 27, 83-92.
- Veiga, T.A.M., King-Díaz, B., Marques, A.S.F., Sampaio, O.M., Vieira, P.C., & Lotina-Hennsen, B. (2013). Furoquinoline alkaloids isolated from Balfourodendron riedelianum as photosynthetic inhibitors in spinach chloroplasts. Journal of Photochemistry and Photobiology B: Biology, 120, 36-43. https://doi.org/10.1016/j.jphotobiol.2013.01.006
- Verma, S.K., Gantait, S., Jeong, B.R., & Hwang, S.J. (2018). Enhanced growth and cardenolides production in Digitalis purpurea under the influence of different LED exposures in the plant factory. Scientific Reports, 8, 18009.
- Wu, M.C., Hou, C.Y., Jiang, C.M., Wang, Y.T., Wang, C.Y., Chen, H.H., & Chang, H.M. (2007). A novel approach of LED light radiation improves the antioxidant activity of pea seedlings. Food Chemistry, 101, 1753-1758.
- XiaoYing, L., ShiRong, G., ZhiGang, X., XueLei, J., & Tezuka, T. (2011). Regulation of chloroplast ultrastructure, cross-section anatomy of leaves, and morphology of stomata of cherry tomato by different light irradiations of light-emitting diodes. HortScience, 46, 217- 221. http://doi.org/10.21273/HORTSCI.46.2.217
- Zheng, L., & Van Labeke, M.C. (2018). Effects of different irradiation levels of light quality on Chrysanthemum. Scientia Horticulturae, 233, 124-131. http://doi.org/10.1016/j.scienta.2018.01.033
- Zlatev, ZS., & Yordanov, IT. (2004). Effects of soil drought on photosynthesis and chlorophyll fluorescence in bean plants. Bulgarian Journal of Plant Physiology, 30, 3–18.
|