- Abdollahi, M., Alboofetileh, M., Rezaei, M., & Behrooz, R. (2013). Comparing physico-mechanical and thermal properties of alginate nanocomposite films reinforced with organic and/or inorganic nanofillers. Food Hydrocolloids, 32(2), 416-424. https://doi.org/10.1016/j.foodhyd.2013.02.006
- Agustin, M.B., Ahmmad, B., De Leon, E.R.P., Buenaobra, J.L., Salazar, J.R., & Hirose, F. (2013). Starch‐based biocomposite films reinforced with cellulose nanocrystals from garlic stalks. Polymer Composites, 34(8), 1325-1332. https://doi.org/10.1002/pc.22546
- American Society for Testing and Materials (ASTM), (2002). Standard test methods for water vapor transmission of materials (E 96-00). In: Annual book of ASTM Standards (pp. 1048-1053). Philadelphia, PA: American Society for Testing and Materials.
- American society standard testing and materials (ASTM), (2008). Standard test method for tensile properties of plastics: D 638-08. Philadelphia.
- Bayzavi, T., Ansari, S., & Danesh, N. (2020). Preparation of composite films from quince seed mucilage and nanocrystalline cellulose and studying their properties. Journal of Food Technology and Nutrition, 17, 93-108.
- Cao, X., Chen, Y., Chang, P.R., Muir, A.D., & Falk, G. (2008). Starch-based nanocomposites reinforced with flax cellulose nanocrystals. Express Polymer Letters, 2(7), 502-510. https://doi.org/10.3144/expresspolymlett.2008.60
- Cerqueira, J.C., Penha, J.D.S., Oliveira, R.S., Guarieiro, L.L.N., Melo, P.D.S., Viana, J.D., & Machado, B.A.S. (2017). Production of biodegradable starch nanocomposites using cellulose nanocrystals extracted from coconut fibers. Polímeros, 27, 320-329.
- Chang, P.R., Jian, R., Zheng, P., Yu, J., & Ma, X. (2010). Preparation and properties of glycerol plasticized-starch (GPS)/cellulose nanoparticle (CN) composites. Carbohydrate Polymers, 79(2), 301-305. https://doi.org/10.1016/j.carbpol.2009.08.007
- Criado, P., Fraschini, C., Salmieri, S., & Lacroix, M. (2020). Cellulose nanocrystals (CNCs) loaded alginate films against lipid oxidation of chicken breast. Food Research International, 132, 109110. https://doi.org/10.1016/j.foodres.2020.109110
- Criado, P., Fraschini, C., Shankar, S., Salmieri, S., & Lacroix, M. (2021). Influence of cellulose nanocrystals gellan gum‐based coating on color and respiration rate of Agaricus bisporus mushrooms. Journal of Food Science, 86(2), 420-425. https://doi.org/10.1111/1750-3841.15580
- de Oliveira Filho, J.G., Albiero, B.R., Cipriano, L., de Oliveira Nobre Bezerra, C.C., Oldoni, F.C.A., Egea, M.B., & Ferreira, M.D. (2021). Arrowroot starch-based films incorporated with a carnauba wax nanoemulsion, cellulose nanocrystals, and essential oils: A new functional material for food packaging applications. Cellulose, 28(10), 6499-6511. https://doi.org/10.1007/s10570-021-03945-0
- de Souza Coelho, C.C., Silva, R.B.S., Carvalho, C.W.P., Rossi, A.L., Teixeira, J.A., Freitas-Silva, O., & Cabral, L.M.C. (2020). Cellulose nanocrystals from grape pomace and their use for the development of starch-based nanocomposite films. International Journal of Biological Macromolecules, 159, 1048-1061. https://doi.org/10.1016/j.ijbiomac.2020.05.046
- Diem, L.N., Banerjee, I., Pal, K., Sukatta, U., Rugthaworn, P., & Sukyai, P. (2021). Evaluation in cellulose nanocrystals effectiveness on composite film based wound dressing from poly (vinyl alcohol) and gum tragacanth, https://doi.org/10.21203/rs.3.rs-1094285/v1
- El Miri, N., Abdelouahdi, K., Barakat, A., Zahouily, M., Fihri, A., Solhy, A., & El Achaby, M. (2015). Bio-nanocomposite films reinforced with cellulose nanocrystals: Rheology of film-forming solutions, transparency, water vapor barrier and tensile properties of films. Carbohydrate Polymers, 129, 156-167. https://doi.org/10.1016/j.carbpol.2015.04.051
- Espitia, P.J.P., Du, W., de Avena-Bustillos, R.J., de Soares, N.F.F., & McHugh, T.H. (2014). Edible films from pectin: Physical-mechanical and antimicrobial properties: A review. Food Hydrocolloids, 35, 287-296. https://doi.org/10.1016/j.foodhyd.2013.06.005
- Gohargani, M., Lashkari, H., & Shirazinejad, A. (2020). Study on biodegradable chitosan-whey protein-based film containing bionanocomposite TiO2 and Zataria multiflora essential oil. Journal of Food Quality, 2020, 8844167. https://doi.org/10.1155/2020/8844167
- Hernández, C., Pérez-Cabrera, L.E., & González-Martínez, C. (2010). Development of linseed-mucilage edible coatings and its application to extend fresh-cut cucumber shelf-life. In Innovations in Food Science and Food Biotechnology in Developing Countries; AMECA Inc.: Queretaro, Mexico, pp. 321-334.
- Jensen, A., Lim, L.T., Barbut, S., & Marcone, M. (2015). Development and characterization of soy protein films incorporated with cellulose fibers using a hot surface casting technique. LWT- Food Science and Technology, 60, 162-170. https://doi.org/10.1016/j.lwt.2014.09.027
- Kumar, P., Sandeep, K.P., Alavi, S., Truong, V.D., & Gorga, R.E. (2010). Preparation and characterization of bio-nanocomposite films based on soy protein isolate and montmorillonite using melt extrusion, Journal of Food Engineering, 100(3), 480-489. https://doi.org/10.1016/j.jfoodeng.2010.04.035
- Kumar, A., Rao, K.M., & Han, S.S. (2017). Development of sodium alginate-xanthan gum based nanocomposite scaffolds reinforced with cellulose nanocrystals and halloysite nanotubes. Polymer Testing, 63, 214-225. https://doi.org/10.1016/j.polymertesting.2017.08.030
- Oun, A.A., & Rhim, J.W. (2016). Isolation of cellulose nanocrystals from grain straws and their use for the preparation of carboxymethyl cellulose-based nanocomposite films. Carbohydrate Polymers, 150, 187-200. https://doi.org/10.1016/j.carbpol.2016.05.020
- Panaitescu, D. M., Frone, A. N., Ghiurea, M. & Chiulan, I. (2015). Influence of storage conditions on starch/PVA films containing cellulose nanofibers. Indian Crop Products, 70, 170-177. https://doi.org/10.1016/j.indcrop.2015.03.028
- Peng, B.L., Dhar, N., Liu, H.L., & Tam, K.C. (2011). Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective. Canadian Journal of Chemistry and Engineering, 89, 1191-1206. https://doi.org/10.1002/cjce.20554
- Prado, N.S., da Silva, I.S.V., Silva, T.A.L., de Oliveira, W.J., de Castro Motta, L.A., Pasquini, D., & Otaguro, H. (2018). Nanocomposite films based on flaxseed gum and cellulose nanocrystals. Materials Research, 21(6), 1-9.
- Qazanfarzadeh, Z., & Kadivar, M. (2015) Investigation of the effect of cellulose nanocrystal on physical properties of whey protein isolates bionanocomposite films. Innovative Food Technologies, 2(4), 75-85. https://doi.org/10.22104/jift.2015.205
- Ramos, M., Valdes, A., Beltran, A., & Garrigos, M.C. (2016). Gelatin-based films and coatings for food packaging application: A review. Coatings, 6, 41. https://doi.org/10.3390/coatings6040041
- Rhim, J.W., Park, H.M., & Ha, C.S. (2013). Bionanocomposites for food packaging applications. Progress Polymer Science, 38, 1629-1652. https://doi.org/10.1016/j.progpolymsci.2013.05.008
- Roohani, M., Habibi, Y., Belgacem Naceur, M., Ebrahim, G., Karimi, A.N., & Dufresne, A. (2008) Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites. European Polymer Journal, 44: 2489-2498. https://doi.org/10.1016/j.eurpolymj.2008.05.024
- Sagnelli, D., Hooshmand, K., Kemmer, G.C., Kirkensgaard, J.J.K., Mortensen, K., Giosafatto, C.V.L., Holse, M., Hebelstrup, K.H., Bao, J., & Stelte, W. (2017) Cross-linked amylose bio-plastic: A transgenic-based compostable plastic alternative. International Journal of Molecule Science, 18, 2075. https://doi.org/10.3390/ijms18102075
- Savadekar, N.R., Karande, V.S., Vigneshwaran, N., Bharimalla, A.K., & Mhaske, S.T., (2012). Preparation of nano cellulose fibers and its application in kappacarrageenan based film. International Journal of Biology and Macromolecules, 51, 1008-1013. https://doi.org/10.1016/j.ijbiomac.2012.08.014
- Sharmin, N., Khan, R., Salmieri, S., Dussault, D., Bouchard, J., & Lacroix, M. (2012). Mechanical and barrier properties of methylcellulose- based films grafted with trimethylolpropane trimethacrylate by gamma radiation: effect of filling with cellulose nanocrystals. JFOR, 2, 24-31.
- Stewart, S., & Mazza, G. (2000). Effect of flaxseed gum on quality and stability of a model salad dressing. Journal of Food Quality, 23, 373-390. https://doi.org/10.1111/j.1745-4557.2000.tb00565.x
- Sukyai, P., Anongjanya, P., Bunyahwuthakul, N., Kongsin, K., Harnkarnsujarit, N., Sukatta, U., & Chollakup, R.J.F.R.I., (2018). Effect of cellulose nanocrystals from sugarcane bagasse on whey protein isolate-based films. Food Research International, 107, 528-535. https://doi.org/10.1016/j.foodres.2018.02.052
- Tabibloghmany, F., Hojjatoleslamy, M., Farhadian, F., & Ehsandoost, E. (2013). Effect of Linseed (Linum usitatissimum) hydrocolloid as edible coating on decreasing oil absorption in potato chips during Deep-fat frying. International Journal of Agricultural Crop Science, 6, 63-69.
- Tee, Y., Wong, J., Ching Tan, M., & Talib, R.A. (2017) Development of edible film from flaxseed mucilage. Bioresources, 11, 10286-10295.
- Teymourpour, Sh., Abdorreza, M.N. & Fariborz, N. (2015) Functional, thermal, and antimicrobial properties of soluble soybean polysaccharide biocomposites reinforced by nano TiO2. Carbohydrate Polymers, 134, 726-731. https://doi.org/10.1016/j.carbpol.2015.08.073
- Torabi, Z., & MohammadiNafchi, A. (2013). The effects of SiO2 nanoparticles on mechanical and physicochemical properties of potato starch films. Journal of Chemical Health Risks, 3(1). https://doi.org/10.22034/jchr.2018.544018
- Wang, Y., Li, D., Wang, L., Yang, L. & Ozkan, N. (2011). Dynamic mechanical properties of flaxseed gum based edible films. Carbohydrate Polymers, 86, 499-504. https://doi.org/10.1016/j.carbpol.2011.04.079
- Wardhono, E.Y., Pinem, M.P., Kustiningsih, I., Agustina, S., Oudet, F., Lefebvre, C., & Guénin, E. (2019). Cellulose nanocrystals to improve stability and functional properties of emulsified film based on chitosan nanoparticles and beeswax. Nanomaterials, 9(12), 1707. https://doi.org/10.3390/nano9121707
- Yan, Q., Hou, H., Guo, P., & Dong, H. (2011). Effects of extrusion and glycerol content on properties of oxidized and acetylated corn starch-based films. Carbohydrate Polymers, 87(1), 707-712. https://doi.org/10.1016/j.carbpol.2011.08.048
|