بررسی خصوصیات فیزیکی و مکانیکی فیلم بایونانوکامپوزیت بر پایهی موسیلاژ کتان و نانوکریستال سلولز
مجله پژوهشهای علوم و صنایع غذایی ایران
مقاله 10 ، دوره 19، شماره 5 - شماره پیاپی 83 ، آذر و دی 1402، صفحه 711-721 اصل مقاله (929.1 K )
نوع مقاله: مقاله پژوهشی
شناسه دیجیتال (DOI): 10.22067/ifstrj.2023.79467.1214
نویسندگان
الهام صفایی 1 ؛ حنان لشکری* 2 ؛ سارا انصاری 3 ؛ علیرضا شیرازی نژاد 1
1 گروه علوم و صنایع غذایی، واحد سروستان، دانشگاه آزاد اسلامی، سروستان ایران
2 گروه علوم و صنایع غذایی، واحد زرین دشت، دانشگاه آزاد اسلامی، زرین دشت، ایران
3 گروه علوم و صنایع غذایی، واحد کازرون، دانشگاه آزاد اسلامی، کازرون، ایران
چکیده
تولیدکنندگان در تلاش هستند تا فیلمهای زیست تخریبپذیر و خوراکی را جایگزین مواد پلاستیکی در صنعت بستهبندی مواد غذایی کنند. هدف از این تحقیق، تولید و مشخصهسازی فیلم خوراکی و زیست تخریبپذیر بر پایه ترکیب صمغ دانه کتان و نانوکریستال سلولز بود. فیلمها از نسبتهای مختلف (0:100، 30:70، 50:50، 70:30 و 100:0) محلولهای موسیلاژ دانه کتان (2 درصد وزنی/حجمی) و نانوکریستال سلولز (6 درصد وزنی/حجمی) تهیه شد و خصوصیات فیزیکی، رنگی و مکانیکی آنها مورد بررسی قرار گرفت و بهترین نسبت برای تهیه فیلم بایونانوکامپوزیت انتخاب گردید. ریزساختار فیلم تولیدی با استفاده از میکروسکوپ الکترونی روبشی (SEM) مورد مطالعه قرار گرفت. میانگین دادهها، توسط آنالیز تجزیه واریانس در طرح کاملاً تصادفی و با استفاده از نرمافزار SPSS 22.0 تجزیه و تحلیل شدند. تفاوتهای بین تیمارها، در آزمون چنددامنهای دانکن و در سطح احتمال 95 درصد بیان گردید (05/0>p) و نمودارهای مربوطه با Excel 2013 رسم شدند. نتایج نشان داد که با افزودن نانوکریستال سلولز به فیلم بر پایه موسیلاژ دانه کتان و افزایش میزان آن، شدت روشنایی فیلمها کاهش و شدت قرمزی، زردی و کدورت فیلمها بهطور معنیداری افزایش یافت (05/0>p). نتایج حاصل در نهایت نشان داد که ترکیب موسیلاژ دانه کتان و نانوکریستال سلولز در نسبت 30:70 توانست بهترین فیلم از لحاظ استحکام مکانیکی و پایداری در مقابل رطوبت و بخارآب را تولید کند. تصویر SEM این فیلم بیانگر سطح صاف، هموار و توزیع یکنواخت نانوکریستالها در شبکه فیلم بود.
کلیدواژهها
رنگ سنجی ؛ ریز ساختار ؛ زیست تخریب پذیر ؛ مقاومت در برابر آب ؛ مقاومت کششی
مراجع
Abdollahi, M., Alboofetileh, M., Rezaei, M., & Behrooz, R. (2013). Comparing physico-mechanical and thermal properties of alginate nanocomposite films reinforced with organic and/or inorganic nanofillers. Food Hydrocolloids, 32 (2), 416-424. https://doi.org/10.1016/j.foodhyd.2013.02.006
Agustin, M.B., Ahmmad, B., De Leon, E.R.P., Buenaobra, J.L., Salazar, J.R., & Hirose, F. (2013). Starch ‐ based biocomposite films reinforced with cellulose nanocrystals from garlic stalks . Polymer Composites, 34 (8), 1325-1332. https://doi.org/10.1002/pc.22546
American Society for Testing and Materials (ASTM), (2002). Standard test methods for water vapor transmission of materials (E 96-00). In: Annual book of ASTM Standards (pp. 1048-1053). Philadelphia, PA: American Society for Testing and Materials.
American society standard testing and materials (ASTM), (2008). Standard test method for tensile properties of plastics: D 638-08. Philadelphia.
Bayzavi, T., Ansari, S., & Danesh, N. (2020). Preparation of composite films from quince seed mucilage and nanocrystalline cellulose and studying their properties. Journal of Food Technology and Nutrition, 17 , 93-108.
Cao, X., Chen, Y., Chang, P.R., Muir, A.D., & Falk, G. (2008). Starch-based nanocomposites reinforced with flax cellulose nanocrystals . Express Polymer Letters, 2 (7), 502-510. https://doi.org/10.3144/expresspolymlett.2008.60
Cerqueira, J.C., Penha, J.D.S., Oliveira, R.S., Guarieiro, L.L.N., Melo, P.D.S., Viana, J.D., & Machado, B.A.S. (2017). Production of biodegradable starch nanocomposites using cellulose nanocrystals extracted from coconut fibers. Polímeros, 27 , 320-329.
Chang, P.R., Jian, R., Zheng, P., Yu, J., & Ma, X. (2010). Preparation and properties of glycerol plasticized-starch (GPS)/cellulose nanoparticle (CN) composites. Carbohydrate Polymers, 79 (2), 301-305. https://doi.org/10.1016/j.carbpol.2009.08.007
Criado, P., Fraschini, C., Salmieri, S., & Lacroix, M. (2020). Cellulose nanocrystals (CNCs) loaded alginate films against lipid oxidation of chicken breast. Food Research International, 132 , 109110. https://doi.org/10.1016/j.foodres.2020.109110
Criado, P., Fraschini, C., Shankar, S., Salmieri, S., & Lacroix, M. (2021). Influence of cellulose nanocrystals gellan gum ‐ based coating on color and respiration rate of Agaricus bisporus mushrooms. Journal of Food Science, 86 (2), 420-425. https://doi.org/10.1111/1750-3841.15580
de Oliveira Filho, J.G., Albiero, B.R., Cipriano, L., de Oliveira Nobre Bezerra, C.C., Oldoni, F.C.A., Egea, M.B., & Ferreira, M.D. (2021). Arrowroot starch-based films incorporated with a carnauba wax nanoemulsion, cellulose nanocrystals, and essential oils: A new functional material for food packaging applications. Cellulose, 28 (10), 6499-6511. https://doi.org/10.1007/s10570-021-03945-0
de Souza Coelho, C.C., Silva, R.B.S., Carvalho, C.W.P., Rossi, A.L., Teixeira, J.A., Freitas-Silva, O., & Cabral, L.M.C. (2020). Cellulose nanocrystals from grape pomace and their use for the development of starch-based nanocomposite films. International Journal of Biological Macromolecules, 159 , 1048-1061. https://doi.org/10.1016/j.ijbiomac.2020.05.046
Diem, L.N., Banerjee, I., Pal, K., Sukatta, U., Rugthaworn, P., & Sukyai, P. (2021). Evaluation in cellulose nanocrystals effectiveness on composite film based wound dressing from poly (vinyl alcohol) and gum tragacanth, https://doi.org/10.21203/rs.3.rs-1094285/v1
El Miri, N., Abdelouahdi, K., Barakat, A., Zahouily, M., Fihri, A., Solhy, A., & El Achaby, M. (2015). Bio-nanocomposite films reinforced with cellulose nanocrystals: Rheology of film-forming solutions, transparency, water vapor barrier and tensile properties of films. Carbohydrate Polymers, 129 , 156-167. https://doi.org/10.1016/j.carbpol.2015.04.051
Espitia, P.J.P., Du, W., de Avena-Bustillos, R.J., de Soares, N.F.F., & McHugh, T.H. (2014). Edible films from pectin: Physical-mechanical and antimicrobial properties: A review. Food Hydrocolloids, 35 , 287-296. https://doi.org/10.1016/j.foodhyd.2013.06.005
Gohargani, M., Lashkari, H., & Shirazinejad, A. (2020). Study on biodegradable chitosan-whey protein-based film containing bionanocomposite TiO2 and Zataria multiflora essential oil. Journal of Food Quality , 2020, 8844167. https://doi.org/10.1155/2020/8844167
Hernández, C., Pérez-Cabrera, L.E., & González-Martínez, C. (2010). Development of linseed-mucilage edible coatings and its application to extend fresh-cut cucumber shelf-life. In Innovations in Food Science and Food Biotechnology in Developing Countries; AMECA Inc.: Queretaro, Mexico, pp. 321-334 .
Jensen, A., Lim, L.T., Barbut, S., & Marcone, M. (2015). Development and characterization of soy protein films incorporated with cellulose fibers using a hot surface casting technique. LWT- Food Science and Technology, 60, 162-170. https://doi.org/10.1016/j.lwt.2014.09.027
Kumar, P., Sandeep, K.P., Alavi, S., Truong, V.D., & Gorga, R.E. (2010). Preparation and characterization of bio-nanocomposite films based on soy protein isolate and montmorillonite using melt extrusion, Journal of Food Engineering, 100 (3), 480-489. https://doi.org/10.1016/j.jfoodeng.2010.04.035
Kumar, A., Rao, K.M., & Han, S.S. (2017). Development of sodium alginate-xanthan gum based nanocomposite scaffolds reinforced with cellulose nanocrystals and halloysite nanotubes. Polymer Testing, 63 , 214-225. https://doi.org/10.1016/j.polymertesting.2017.08.030
Oun, A.A., & Rhim, J.W. (2016). Isolation of cellulose nanocrystals from grain straws and their use for the preparation of carboxymethyl cellulose-based nanocomposite films. Carbohydrate Polymers, 150 , 187-200. https://doi.org/10.1016/j.carbpol.2016.05.020
Panaitescu, D. M., Frone, A. N., Ghiurea, M. & Chiulan, I. (2015). Influence of storage conditions on starch/PVA films containing cellulose nanofibers. Indian Crop Products, 70 , 170-177. https://doi.org/10.1016/j.indcrop.2015.03.028
Peng, B.L., Dhar, N., Liu, H.L., & Tam, K.C. (2011). Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective. Canadian Journal of Chemistry and Engineering, 89 , 1191-1206. https://doi.org/10.1002/cjce.20554
Prado, N.S., da Silva, I.S.V., Silva, T.A.L., de Oliveira, W.J., de Castro Motta, L.A., Pasquini, D., & Otaguro, H. (2018). Nanocomposite films based on flaxseed gum and cellulose nanocrystals. Materials Research, 21(6), 1-9.
Qazanfarzadeh, Z., & Kadivar, M. (2015) Investigation of the effect of cellulose nanocrystal on physical properties of whey protein isolates bionanocomposite films. Innovative Food Technologies, 2 (4), 75-85. https://doi.org/10.22104/jift.2015.205
Ramos, M., Valdes, A., Beltran, A., & Garrigos, M.C. (2016). Gelatin-based films and coatings for food packaging application: A review. Coatings, 6 , 41. https://doi.org/10.3390/coatings6040041
Rhim, J.W., Park, H.M., & Ha, C.S. (2013). Bionanocomposites for food packaging applications. Progress Polymer Science, 38 , 1629-1652. https://doi.org/10.1016/j.progpolymsci.2013.05.008
Roohani, M., Habibi, Y., Belgacem Naceur, M., Ebrahim, G., Karimi, A.N., & Dufresne, A. (2008) Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites. European Polymer Journal, 44 : 2489-2498. https://doi.org/10.1016/j.eurpolymj.2008.05.024
Sagnelli, D., Hooshmand, K., Kemmer, G.C., Kirkensgaard, J.J.K., Mortensen, K., Giosafatto, C.V.L., Holse, M., Hebelstrup, K.H., Bao, J., & Stelte, W. (2017) Cross-linked amylose bio-plastic: A transgenic-based compostable plastic alternative. International Journal of Molecule Science, 18 , 2075. https://doi.org/10.3390/ijms18102075
Savadekar, N.R., Karande, V.S., Vigneshwaran, N., Bharimalla, A.K., & Mhaske, S.T., (2012). Preparation of nano cellulose fibers and its application in kappacarrageenan based film. International Journal of Biology and Macromolecules, 51 , 1008-1013. https://doi.org/10.1016/j.ijbiomac.2012.08.014
Sharmin, N., Khan, R., Salmieri, S., Dussault, D., Bouchard, J., & Lacroix, M. (2012). Mechanical and barrier properties of methylcellulose- based films grafted with trimethylolpropane trimethacrylate by gamma radiation: effect of filling with cellulose nanocrystals . JFOR, 2 , 24-31.
Stewart, S., & Mazza, G. (2000). Effect of flaxseed gum on quality and stability of a model salad dressing. Journal of Food Quality, 23 , 373-390. https://doi.org/10.1111/j.1745-4557.2000.tb00565.x
Sukyai, P., Anongjanya, P., Bunyahwuthakul, N., Kongsin, K., Harnkarnsujarit, N., Sukatta, U., & Chollakup, R.J.F.R.I., (2018). Effect of cellulose nanocrystals from sugarcane bagasse on whey protein isolate-based films. Food Research International, 107, 528-535. https://doi.org/10.1016/j.foodres.2018.02.052
Tabibloghmany, F., Hojjatoleslamy, M., Farhadian, F., & Ehsandoost, E. (2013). Effect of Linseed (Linum usitatissimum ) hydrocolloid as edible coating on decreasing oil absorption in potato chips during Deep-fat frying. International Journal of Agricultural Crop Science, 6 , 63-69 .
Tee, Y., Wong, J., Ching Tan, M., & Talib, R.A. (2017) Development of edible film from flaxseed mucilage . Bioresources, 11 , 10286-10295 .
Teymourpour, Sh., Abdorreza, M.N. & Fariborz, N. (2015) Functional, thermal, and antimicrobial properties of soluble soybean polysaccharide biocomposites reinforced by nano TiO 2 . Carbohydrate Polymers, 134 , 726-731. https://doi.org/10.1016/j.carbpol.2015.08.073
Torabi, Z., & MohammadiNafchi, A. (2013). The effects of SiO 2 nanoparticles on mechanical and physicochemical properties of potato starch films. Journal of Chemical Health Risks, 3 (1). https://doi.org/10.22034/jchr.2018.544018
Wang, Y., Li, D., Wang, L., Yang, L. & Ozkan, N. (2011). Dynamic mechanical properties of flaxseed gum based edible films. Carbohydrate Polymers, 86 , 499-504. https://doi.org/10.1016/j.carbpol.2011.04.079
Wardhono, E.Y., Pinem, M.P., Kustiningsih, I., Agustina, S., Oudet, F., Lefebvre, C., & Guénin, E. (2019). Cellulose nanocrystals to improve stability and functional properties of emulsified film based on chitosan nanoparticles and beeswax. Nanomaterials, 9 (12), 1707. https://doi.org/10.3390/nano9121707
Yan, Q., Hou, H., Guo, P., & Dong, H. (2011). Effects of extrusion and glycerol content on properties of oxidized and acetylated corn starch-based films. Carbohydrate Polymers, 87 (1), 707-712. https://doi.org/10.1016/j.carbpol.2011.08.048
آمار
تعداد مشاهده مقاله: 6,937
تعداد دریافت فایل اصل مقاله: 1,081