- Abdolmaleki, M., Khosh-Khui, M., Eshghi, S., & Ramezanian, A. (2015). Improvement in vase life of cut rose cv. ‘Dolce Vita’ by preharvest foliar application of calcium chloride and salicylic acid. Intenational Journal of Horticultural Science and Technology, 21(1), 55-66. https://doi.org/10.22059/ijhst.2015.54264
- Abd-El-Hady, W.M.F. (2020). Effect of potassium nitrate and adenosine triphosphate on pre-and post-harvest gerbera (Gerbera jamesonii ). Scientific Journal of Flowers and Ornamental Plants, 7(3), 337–348. https://dx.doi.org/10.21608/sjfop.2020.114574
- Amin, A.O. (2017). Influence of Nanosilver and stevia extract on cut anthurium inflorescence. MiddleEast Journal of Applied Sciences, 7(2), 299-313.
- Bagheri, H., Ladan Moghadam, A., Danaee, E., & Abdossi, V. (2021). Morphophysiological and phytochemical changes of Mentha piperita using calcium, potassium, iron and manganese nano-fertilizers. European Journal of Horticultural Science, 86(4), 419-430. https://doi.org/10.17660/eJHS.2021/86.4.10
- Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254. https://doi.org/10.1016/0003-2697(76)90527-3
- Chandra, S., Chakraborty, N., Dasgupta, A., Sarkar, J., Panda, K., & Acharya, K. (2015). Chitosan nanoparticles: A positive modulator of innate immune responses in plants. Scientific Reports, 5, 15195. https://doi.org/10.1038/srep15195
- Chandra, S., Chakraborty, N., Chakraborty, A., Rai, R., Bera, B., & Acharya, K. (2014). Induction of defense response against blister blight by calcium chloride in tea. Archives of Phytopathology and Plant Protection, 47, 2400–2409. https://doi.org/10.1080/03235408.2014.880555
- Chéour, F., & Souiden, Y. (2015). Calcium delays the postharvest ripening and related membrane-lipid changes of tomato. Journal of Nutrition and Food Sciences, 5, 393.
- Chamani, E., Khalighi, A., Joyce, D., Irving, D., Zamani, Z., Mostoufi, Y., Kafi, M., & Falavarjani, M. (2005). Effects of silver thiosulfate and 1-methylcyclopropene on physicochemical characteristics of ‘First Red’ rose cut flowers. Iranian Journal of Horticultural Science and Technology, 6(3), 159-170. (In Persian)
- Combrink, N.J. (2017). Calcium improves gerbera (Gerbera hybrida) vase life. South African Journal of Plant and Soil, 35, 235–236. https://doi.org/10.1080/02571862.2017.1354089
- García-González, A., De Abril Alexandra Soriano-Melgar, L., María Luisa Cid-López Yakeline Cortez-Mazatán, G., Mendoza-Mendoza, E., Alonso Valdez-Aguilar, L., & Darío Peralta-Rodríguez, R. (2022). Effects of calcium oxide nanoparticles on vase life of gerbera cut flowers. Scientia Horticulturae, 291(3), 110532. https://doi.org/10.1016/j.scienta.2021.110532
- Ghadimian, S., & Danaei, E. (2020). Influences of ascorbic acid and salicylic acid on vase life of cut flowers rose (Rosa hybrida Black magic). Alkhas, 2(1), 1-6. http://dx.doi.org/10.29252/alkhass.2.1.1
- Ghidan, A.Y., & Antary, T.M.A. (2019). Applications of Nanotechnology in Agriculture. In M. Stoytcheva, and R. Zlatev (Eds.), Applications of Nanobiotechnology. IntechOpen.
- Giannopolitis, C.N., & Ries, S.K. (1977). Superoxide dismutases: I. Occurrence in higher plants. Plant Physiology, 59(2), 309–314.
- Handa, A.K., & Mattoo, A.K. (2010). Differential and functional interactions emphasize the multiple roles of polyamines in plants. Plant Physiology and Biochemistry, 48, 540–546. https://doi.org/10.1016/j.plaphy.2010.02.009
- Hajizadeh, H.S. (2016). The study of freesia (Freesia ) cut flowers quality in relation with nano silver in preservative solutions. Acta Horticulturae, 1131, 1-10. https://doi.org/10.17660/ActaHortic.2016.1131.1
- Halevy, A.H., Torre, S., Borochov, A., Porat, R., Philosoph-Hadas, S., Meir, S., & Fridman, H. (2001). Calcium in regulation of postharvest life of flowers. Acta Horticulturae, 543, 345-351. https://doi.org/10.17660/ActaHortic.2001.543.42
- Hepler, P.K. (2005). Calcium: A central regulator of plant growth and development. The Plant Cell, 17, 2142-2155. https://doi.org/10.1105/tpc.105.032508
- He, Y., Qian, L., Liu, X., Hu, R., Huang, M., Liu, Y., Chen, G., Losic, D., & Zhu, H. (2018). Graphene oxide as an antimicrobial agent can extend the vase life of cut flowers. Nano Research, 11(11), 6010-6022. https://doi.org/10.1007/s12274-018-2115-8
- He, S., Joyce, D.C., Irving, D.E., & Faragher, J.D. (2012). Stem end blockage in cut Grevillea ‘Crimson Yul-lo’inflorescences. Postharvest Biology and Technology, 41, 78–84. https://doi.org/10.1016/j.postharvbio.2006.03.002
- Hosseini Farahi, M., & Aboutalebi Jahromi, A. (2018). Effect of pre-harvest foliar application of polyamines and calcium sulfate on vegetative characteristics and mineral nutrient uptake in Rosa hybrida. Journal of Ornamental Plants, 8(4), 241-253.
- Kazaz, S., Dogan, E., Kilic, T., Sahin, E.G.E., & Seyhan, S. (2019). Influence of holding solutions on vase life of cut hydrangea flowers (Hydrangea macrophylla Thunb.). Fresenius Environmental Bulletin, 28(4), 3554-3559.
- Kiafar, H., Mousavi, M., Ebadi, A., Moallemi, N., & Fattahi Moghadam, M. (2020). Effect of Ca nanoparticles on peach cultivars (Valad Abadi and Alberta). Journal of Agricultural Engineering Soil Science and Agricultural Mechanization, (Scientific Journal of Agriculture), 43(1), 1-14. (In Persian with English abstract). https://doi.org/10.22055/agen.2020.28205.1476
- Koohkan, F., Ahmadi, N., & Ahmadi, S.J. (2014). Improving vase life of carnation cut flowers by silver nano-particles acting as anti-ethylene agent. Journal of Applied Horticulture, 16(3): 210-214.
- Langroudi, M.E., Hashemabadi, D., Kalatejari, S., & Asadpour, L. (2019). Effect of silver nanoparticles, spermine, salicylic acid and essential oils on vase life of alstroemeria. Journal of NeotropicalAgriculture, 6(2), 100–108.
- Leus, L., Van Laere, K.., De Riek, J., Huylenbroeck, V. J.R., & Huylenbroeck, V.J. (2018). Ornamental Crops, Hand book of Plant Breeding. Berlin: Springer, 719-767. https://doi.org/10.1007/978-3-319-90698-0
- Li, H., Li, H., Liu, J., Luo, Zh., Joyce, D., & He, Sh. (2017). Nano-silver treatments reduced bacterial colonization and biofilm formation at the stem-ends of cut gladiolus ‘Eerde’ spikes. Postharvest Biology Technology, 123, 102–111. https://doi.org/10.1016/j.postharvbio.2016.08.014
- Lichanporn, I., Nantachai, N., & Tunganurat, P. (2019). Effect of calcium carbonate-nanoparticles-longkong peel extracts coating on quality browning of longkong fruit. EasyChair, https://doi.org/10.29007/xrj9
- Liu, J., Zhang, Z., Li, H., Lin, X., Lin, S., Joyce, D.C., & He, S. (2018). Alleviation of effects of exogenous ethylene on cut ‘Master’ carnation flowers with nano-silver and silver thiosulfate. Postharvest Biology and Technology, 143, 86-91. https://doi.org/10.1016/j.postharvbio.2018.04.017
- Lin, X., Li, H., Lin, S., Xu, M., Liu, J., Li, Y., & He, S. (2019). Improving the postharvest performance of cut spray ‘Prince’ carnations by vase treatments with nano-silver and sucrose. The Journal of Horticultural Science and Biotechnology, 94(4), 513-521. https://doi.org/10.1080/14620316.2019.1572461
- Lo’ay, A.A., & Ameer, N.N. (2019). Performance of calcium nanoparticles blending with ascorbic acid and alleviation internal browning of ‘Hindi Be-Sennara’ mango fruit at a low temperature. Scientia Horticulturae, 254, 199–207. https://doi.org/10.1016/j.scienta.2019.05.006
- Ma, F., Lu, R., Liu, H., Shi, B., Zhang, J., Tan, M., & Jiang, M. (2012). Nitric oxide-activated calcium/calmodulin-dependent protein kinase regulates the abscisic acid-induced antioxidant defense in maize. Journal of Experimental Botany, 63, 4835–4847. https://doi.org/10.1093%2Fjxb%2Fers161
- Moallaye-Mazraei, S., Chehrazi, M., & Khaleghi, E. (2020). The effect of calcium nanochelate on morphological, physiological, biochemical characteristics and vase life of three cultivars of gerbera under hydroponic system. Plant Productions, 43(1), 53–66. https://doi.org/10.22055/ppd.2019.25085.1574
- Mohamed, A.D.T., Khenizy, S.A.M., Helme, S.S., & El Sayed, H.A. (2018). Improving the quality of gerbera flowers after harvesting. The Middle East Journal, 7(3), 915–931.
- Mohammadi Ostad Kalayeh, S., Mostofi, Y., & Basirat, M. (2011). Study on some chemical compounds on the vase life of two cultivars of cut roses. Journal of Ornamental and Horticultural Plants, 1(2), 123-128.
- Naing, A.H., & Kim, C.K. (2020). Application of nano-silver particles to control the postharvest biologyof cut flowers: A review. Scientia Horticulturae, 270, 109463. https://doi.org/10.1016/j.scienta.2020.109463
- Nikbakht, A., Kafi, M., Babalar, M., Xia, Y.P., Luo, A., & Etemadi, N. (2008). Effect of humic acid on plant growth, nutrient uptake, and postharvest life of gerbera. Journal of Plant Nutrition, 31(12), 2155–2167. https://doi.org/10.1080/01904160802462819
- Perik, R.R.J., Raz´e, D., Ferrante, A., & van Doorn, W.G. (2014). Stem bending in cut Gerbera jamesonii flowers: effects of a pulse treatment with sucrose and calcium ions. Postharvest Biology and Technology, 98, 7–13. https://doi.org/10.1016/j.postharvbio.2014.06.008
- Ranjbar, S., Ramezanian, A., & Rahemi, M. (2019). Nano-calcium and its potential to improve ‘Red Delicious’ apple fruit characteristics. Horticulture, Environment, and Biotechnology, 61(1), 23–30. https://doi.org/10.1007/s13580-019-00168-y
- Rani, P., & Singh, N. (2014). Senescence and postharvest studies of cut flowers: a critical review. Pertanika Journal of Tropical Agricultural Science, 37(2), 159–201.
- Reid, M.S., & Jiang C.Z. (2012). Postharvest biology and technology of cut flowers and potted plants. Horticultural Reviews, 40, 1-54. https://doi.org/10.1002/9781118351871.ch1
- Samadzadeh, H., & Kamiab, F. (2017). Effects of silver and calcium nanoparticles on vase life and some physiological traits of Konst Coco Alstroemeria cut flower. Journal of Science and Technology of Greenhouse Culture, 8, 75–89.
- Saeed, T., Hassan, I., Abbasi, N.A., & Jilani, G. (2016). Antioxidative activities and qualitative changes in gladiolus cut flowers in response to salicylic acid application. Scientia Horticulturae, 210, 236–241. https://doi.org/10.1016/j.scienta.2016.07.034
- Shafiee-Masouleh, S. (2018). Effects of nano-silver pulsing, calcium sulfate and gibberellin on an antioxidant molecule and vase life of cut gerbera flowers. Advances in Horticultural Science, 32(2), 185–192.
- Skutnik, E., Jędrzejuk, A., Rabiza-Świder, J., Rochala-Wojciechowska, J., Latkowska, M., & Łukaszewska, A. (2020). Nanosilver as a novel biocide for control of senescence in garden cosmos. Scientific Reports, 10(1), 1-9. https://doi.org/10.1038/s41598-020-67098-z
- Stewart, R.R., & Bewley, J.D. (1980). Lipid peroxidation associated with accelerated aging of soybean axes. Plant Physiology, 65(2), 245–248. https://doi.org/10.1104/pp.65.2.245
- Sudaria, M.A., Uthairatanakij, A., & Nuguyen, H.T. (2017). Postharvest quality effects of different vaselife solutions on cut rose (Rosa hybrida). International Journal of Agriculture Forestry and Life Sciences, 1(1), 12-20.
- Tejeswini, M.G., Sowmya, H.V., Swarnalatha, S.P., & Negi, P.S. (2014). Antifungal activity of essential oils and their combinations in vitro and in vivo conditions. Archives of Phytopathology and Plant Protection, 47, 564–570. https://doi.org/10.1080/03235408.2013.814235
- Tran, Q.H., & Le, A.T. (2013). Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Advances in Natural Sciences. Nanoscience and Nanotechnology, 4(3), 4033001. https://doi.org/10.1088/2043-6262/4/3/033001
- Vinodh, S., Kannan, M., & Jawaharlal, M. (2013). Effect of nanosilver and sucrose on post-harvest quality of cut Asiatic Lilium cv. Tresor. The Bioscan, 8(3), 901-90.
- Yan, A., & Chen, Z. (2019). Impacts of silver nanoparticles on plants: a focus on the phytotoxicity and underlying mechanism. International Journal of Molecular Sciences, 20(5), 1003. https://doi.org/10.3390/ijms20051003
- Wu, B., Guo, Q., Wang, G.X., Peng, X.Y., Wang, J.D., & Che, F.B. (2015). Effects of different postharvest treatments on the physiology and quality of ‘xiaobai’ apricots at room temperature. Journal of Food Science and Technology, 52, 2247–2255. https://doi.org/10.1007%2Fs13197-014-1288-8
|