- Ahmad, F., Zaidi, S., & Azad, Z. (2021). Microwave-Assisted Extraction (MAE) Technology: Potential for Extraction of Food Components Handbook of Research on Food Processing and Preservation Technologies (pp. 79-103): Apple Academic Press.
- Ahmed, M., & Eun, J.-B. (2018). Flavonoids in fruits and vegetables after thermal and nonthermal processing: A review. Critical reviews in food science and nutrition, 58(18), 3159-3188. https://doi.org/10.1080/10408398.2017.1353480
- Ardalani, H., Hadipanah, A., & Sahebkar, A. (2020). Medicinal plants in the treatment of peptic ulcer disease: A review. Mini reviews in medicinal chemistry, 20(8), 662-702. https://doi.org/10.2174/1389557520666191227151939
- Asadi, Y., & Farahmandfar, R. (2020). Frying stability of canola oil supplemented with ultrasound‐assisted extraction of Teucrium polium. Food science & nutrition, 8(2), 1187-1196. https://doi.org/10.1002/fsn3.1405
- Atasoy, A. D., Yesilnacar, M. I., Yildirim, A., & Atasoy, A. F. (2019). Nutritional Minerals and Heavy Metals in Tea Infusions and Daily Intake of Human Body. Turkish Journal of Agriculture-Food Science and Technology, 7(2), 234-239. https://doi.org/10.24925/turjaf.v7i2.234-239.2217
- Calderón-Oliver, M., & Ponce-Alquicira, E. (2021). Environmentally friendly techniques and their comparison in the extraction of natural antioxidants from green tea, rosemary, clove, and oregano. Molecules, 26(7), 1869. https://doi.org/10.3390/molecules26071869
- Cassol, L., Rodrigues, E., & Noreña, C. P. Z. (2019). Extracting phenolic compounds from Hibiscus sabdariffa L. calyx using microwave assisted extraction. Industrial crops and products, 133, 168-177. https://doi.org/10.1016/j.indcrop.2019.03.023
- Chen, Y., Zeng, L., Liao, Y., Li, J., Zhou, B., Yang, Z., & Tang, J. (2020). Enzymatic reaction-related protein degradation and proteinaceous amino acid metabolism during the black tea (Camellia sinensis) manufacturing process. Foods, 9(1), 66. https://doi.org/10.3390/foods9010066
- Dai, J., & Mumper, R. J. (2010). Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules, 15(10), 7313-7352. https://doi.org/10.3390/molecules15107313
- Farahmandfar, R., Asnaashari, M., Asadi, Y., & Beyranvand, B. (2019). Comparison of bioactive compounds of matricaria recutita extracted by ultrasound and maceration and their effects on preventing sunflower oil during frying. Current Nutrition & Food Science, 15(2), 156-164. https://doi.org/10.2174/1573401313666170712110248
- Farahmandfar, R., Asnaashari, M., & Bakhshandeh, T. (2019). Influence of ultrasound-assist and classical extractions on total phenolic, tannin, flavonoids, tocopherol and antioxidant characteristics of Teucrium polium aerial parts. Journal of Food Measurement and Characterization, 13(2), 1357-1363. https://doi.org/10.1007/s11694-019-00051-5
- Farahmandfar, R., Asnaashari, M., & Sayyad, R. (2017). Antioxidant activity and total phenolic content of Capsicum frutescens extracted by supercritical CO2, ultrasound and traditional solvent extraction methods. Journal of Essential Oil Bearing Plants, 20(1), 196-204. https://doi.org/10.1080/0972060X.2017.1280420
- Farahmandfar, R., & Aziminezhad, H. (2021). Effect of withering, rolling, fermentation and drying steps of Gilan's black tea on its phenolic content and antioxidant properties. Food Science and Technology, 18(112), 1-10.
- Farahmandfar, R., Naeli, M. H., Naderi, M., & Asnaashari, M. (2019). Stabilizing corn oil using the lemon balm (Melissa officinalis) antioxidants extracted by subcritical water. Journal of food science and technology, 56(2), 695-704. https://doi.org/10.1007/s13197-018-3525-z
- Farahmandfar, R., Tirgarian, B., Dehghan, B., & Nemati, A. (2020). Changes in chemical composition and biological activity of essential oil from Thomson navel orange (Citrus sinensis Osbeck) peel under freezing, convective, vacuum, and microwave drying methods. Food science & nutrition, 8(1), 124-138. https://doi.org/10.1002/fsn3.1279
- Fung, K., Zhang, Z., Wong, J., & Wong, M. H. (2003). Aluminium and fluoride concentrations of three tea varieties growing at Lantau Island, Hong Kong. Environmental Geochemistry and Health, 25(2), 219-232. https://doi.org/10.1023/A:1023233226620
- Ghale Askari, S., Oskoei, V., Abedi, F., Motahhari Far, P., Naimabadi, A., & Javan, S. (2020). Evaluation of heavy metal concentrations in black tea and infusions in Neyshabur city and estimating health risk to consumers. International Journal of Environmental Analytical Chemistry, 1-10. https://doi.org/10.1080/03067319.2020.1842388
- Ghasemzadeh-Mohammadi, V., Zamani, B., Afsharpour, M., & Mohammadi, A. (2017). Extraction of caffeine and catechins using microwave-assisted and ultrasonic extraction from green tea leaves: An optimization study by the IV-optimal design. Food Science and Biotechnology, 26(5), 1281-1290. https://doi.org/10.1007/s10068-017-0182-3
- Idrees, M., Jan, F. A., Hussain, S., & Salam, A. (2020). Heavy metals level, health risk assessment associated with contamination of black tea; a case study from Khyber Pakhtunkhwa (KPK), Pakistan. Biological Trace Element Research, 198(1), 344-349. https://doi.org/10.1007/s12011-020-02059-1
- Janda, K., Jakubczyk, K., Baranowska-Bosiacka, I., Kapczuk, P., Kochman, J., Rębacz-Maron, E., & Gutowska, I. (2020). Mineral composition and antioxidant potential of coffee beverages depending on the brewing method. Foods, 9(2), 121. https://doi.org/10.3390/foods9020121
- Kaderides, K., Papaoikonomou, L., Serafim, M., & Goula, A. M. (2019). Microwave-assisted extraction of phenolics from pomegranate peels: Optimization, kinetics, and comparison with ultrasounds extraction. Chemical Engineering and Processing-Process Intensification, 137, 1-11. https://doi.org/10.1016/j.cep.2019.01.006
- Krishnan, R. Y., & Rajan, K. (2016). Microwave assisted extraction of flavonoids from Terminalia bellerica: study of kinetics and thermodynamics. Separation and Purification Technology, 157, 169-178. https://doi.org/10.1016/j.seppur.2015.11.035
- Li, J., Wang, J., Yao, Y., Hua, J., Zhou, Q., Jiang, Y., . . . Yuan, H. (2020). Phytochemical comparison of different tea (Camellia sinensis) cultivars and its association with sensory quality of finished tea. LWT, 117, 108595. https://doi.org/10.1016/j.lwt.2019.108595
- Oussaid, S., Madani, K., Houali, K., Rendueles, M., & Diaz, M. (2018). Optimized microwave-assisted extraction of phenolic compounds from Scirpus holoschoenus and its antipseudomonal efficacy, alone or in combination with Thymus fontanesii essential oil and lactic acid. Food and Bioproducts Processing, 110, 85-95. https://doi.org/10.1016/j.fbp.2018.04.008
- Pasrija, D., & Anandharamakrishnan, C. (2015). Techniques for extraction of green tea polyphenols: a review. Food and Bioprocess Technology, 8(5), 935-950. https://doi.org/10.1007/s11947-015-1479-y
- Pereira, C. G., & Meireles, M. A. A. (2007). Economic analysis of rosemary, fennel and anise essential oils obtained by supercritical fluid extraction. Flavour and Fragrance Journal, 22(5), 407-413.
- Pourramezani, F., Akrami Mohajeri, F., Salmani, M. H., Dehghani Tafti, A., & Khalili Sadrabad, E. (2019). Evaluation of heavy metal concentration in imported black tea in Iran and consumer risk assessments. Food Science & Nutrition, 7(12), 4021-4026.
- Rehder, A. P., Silva, P. B., Xavier, A. M., & Barrozo, M. A. (2021). Optimization of microwave-assisted extraction of bioactive compounds from a tea blend. Journal of Food Measurement and Characterization, 15(2), 1588-1598. https://doi.org/10.1007/s11694-020-00750-4
- Routray, W., & Orsat, V. (2012). Microwave-assisted extraction of flavonoids: a review. Food and Bioprocess Technology, 5(2), 409-424. https://doi.org/10.1007/s11947-011-0573-z
- Seenivasan, S., Manikandan, N., Muraleedharan, N. N., & Selvasundaram, R. (2008). Heavy metal content of black teas from south India. Food control, 19(8), 746-749. https://doi.org/10.1016/j.foodcont.2007.07.012
- SeyyediBidgoli, N., Mostafaii, G. R., Akbari, H., Mohammadzadeh, M., Hesami Arani, M., & Miranzadeh, M. B. (2020). Determination of the concentration of heavy metals in infused teas and their assessment of potential health risk in Kashan, Iran. International Journal of Environmental Analytical Chemistry, 1-11. https://doi.org/10.1080/03067319.2020.1836174
- Spigno, G., & De Faveri, D. (2009). Microwave-assisted extraction of tea phenols: A phenomenological study. Journal of food engineering, 93(2), 210-217. https://doi.org/10.1016/j.jfoodeng.2009.01.006
- Ting, A., Chow, Y., & Tan, W. (2013). Microbial and heavy metal contamination in commonly consumed traditional Chinese herbal medicines. Journal of Traditional Chinese Medicine, 33(1), 119-124. https://doi.org/10.1016/S0254-6272(13)60112-0
- Wang, F., Zhao, H., Yu, C., Tang, J., Wu, W., & Yang, Q. (2020). Determination of the geographical origin of maize (Zea mays) using mineral element fingerprints. Journal of the Science of Food and Agriculture, 100(3), 1294-1300.
- Yuan, Y., Zhang, J., Fan, J., Clark, J., Shen, P., Li, Y., & Zhang, C. (2018). Microwave assisted extraction of phenolic compounds from four economic brown macroalgae species and evaluation of their antioxidant activities and inhibitory effects on α-amylase, α-glucosidase, pancreatic lipase and tyrosinase. Food Research International, 113, 288-297. https://doi.org/10.1016/j.foodres.2018.07.021
- Zhang, M., Huang, C., Zhang, J., Qin, H., Ma, G., Liu, X., & Yin, J. (2020). Accurate discrimination of tea from multiple geographical regions by combining multi-elements with multivariate statistical analysis. Journal of Food Measurement and Characterization, 14(6), 3361-3370. https://doi.org/10.1007/s11694-020-00575-1
|