- Akbarbaglu, Z., Mahdi Jafari, S., Sarabandi, K., Mohammadi, M., Khakbaz Heshmati, M., & Pezeshki, A. (2019). Influence of spray drying encapsulation on the retention of antioxidant properties and microstructure of flaxseed protein hydrolysates. Colloids and Surfaces B: Biointerfaces 178: 421–429. https://doi.org/10.1016/j.colsurfb.2019.03.038.
- Aluko, R.E. (2015). Structure and function of plant protein-derived antihypertensive peptides. Current Opinion in Food Science 4: 44–50. https://doi.org/10.1016/j.cofs.2015.05.002.
- Chalamaiah, M., Yu, W., & Wu, J. (2017). Immunomodulatory and anticancer protein hydrolysates (peptides) from food proteins : a review. Food Chemistry 245: 205–222. https://doi.org/10.1016/j.foodchem.2017.10.087.
- Cotabarren, J., Rosso, A.M., Tellechea, M., García-, J., Rivera, J.L., & Obregón, W.D. (2019). Adding value to the chia (Salvia hispanica) expeller: Production of bioactive peptides with antioxidant properties by enzymatic hydrolysis with Papain. Food Chemistry 274: 848–856. https://doi.org/10.1016/j.foodchem.2018.09.061.
- Derakhshan, Z., Ferrante, M., Tadi, M., Ansari, F., Heydari, A., & Hosseini, M.S. (2018). Antioxidant activity and total phenolic content of ethanolic extract of pomegranate peels, juice and seeds. Food and Chemical Toxicology. https://doi.org/10.1016/j.fct.2018.02.023.
- Fathi, M., Hosseini, F.S., & Rashidi, L. (2022). Optimized enzymatic hydrolysis of olive pomace proteins using response surface methodology. Applied Food Biotechnology 9(2): 79–90. https://doi.org/10.22037/afb.v9i2.36192.
- Gerzhova, A., Mondor, M., Benali, M., & Aider, M. (2016). Study of total dry matter and protein extraction from canola meal as affected by the pH, salt addition and use of zeta-potential/turbidimetry analysis to optimize the extraction conditions. Food Chemistry 201: 243–252. https://doi.org/10.1016/j.foodchem.2016.01.074.
- Hall, F., Johnson, P.E., Liceaga, A., & Johnson, P.E. (2018). Effect of enzymatic hydrolysis on bioactive properties and allergenicity of cricket (Gryllodes sigillatus) protein. Food Chemistry. https://doi.org/10.1016/j.foodchem.2018.04.058.
- Hamzeh, A., Rezaei, M., Khodabandeh, S., Motamedzadegan, A., Noruzinia, M., & Regenstein, J. Mac. (2019). Optimization of antioxidant peptides production from the mantle of cuttlefish (Sepia pharaonis) using RSM and fractionation. Journal of Aquatic Food Product Technology 28(4): 392–401. https://doi.org/10.1080/10498850.2019.1594480.
- Houde, M., Khodaei, N., Benkerroum, N., & Karboune, S. (2018). Barley protein concentrates: Extraction, structural and functional properties. Food Chemistry 254: 367–376. https://doi.org/10.1016/j.foodchem.2018.01.156.
- Islam, M.S., Hongxin, W., Admassu, H., Noman, A., Ma, C., & An wei, F. (2021). Degree of hydrolysis, functional and antioxidant properties of protein hydrolysates from Grass Turtle (Chinemys reevesii) as influenced by enzymatic hydrolysis conditions. Food Science and Nutrition 9(8): 4031–4047. https://doi.org/10.1002/fsn3.1903.
- Jahanbani, R., Ghaffari, S.M., Salami, M., Vahdati, K., Sepehri, H., & Sarvestani, N.N. (2016). Antioxidant and anticancer activities of walnut (Juglans regia) protein hydrolysates using different proteases. Plant Foods for Human Nutrition 71(4): 402–409. https://doi.org/10.1007/s11130-016-0576-z.
- Jin, F., Wang, Y., Tang, H., Regenstein, J.M., & Wang, F. (2020). Limited hydrolysis of dehulled walnut (Juglans regia) proteins using trypsin: Functional properties and structural characteristics. Lwt 133(35): 110035. https://doi.org/10.1016/j.lwt.2020.110035.
- Kato, A., & Nakai, S. (1980). Hydrophobicity determined by a fluorescence probe. Biochimica et Biophysica Acta 624: 13–20.
- Kim, S.S., Ahn, C.B., Moon, S.W., & Je, J.Y. (2018). Purification and antioxidant activities of peptides from sea squirt (Halocynthia roretzi) protein hydrolysates using pepsin hydrolysis. Food Bioscience 25: 128–133. https://doi.org/10.1016/j.fbio.2018.08.010.
- Kurozawa, L.E., Park, K.J., & Hubinger, M.D. (2008). Optimization of the enzymatic hydrolysis of chicken meat using response surface methodology. Journal of Food Science 73(5). https://doi.org/10.1111/j.1750-3841.2008.00765.x.
- Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259), 680–685. https://doi.org/10.1038/227680a0.
- Maluf, J.U., Fiorese, M.L., Maestre, K.L., Dos Passos, F.R., Finkler, J.K., Fleck, J.F., & Borba, C.E. (2020). Optimization of the porcine liver enzymatic hydrolysis conditions. Journal of Food Process Engineering 43(4). https://doi.org/10.1111/jfpe.13370.
- Meshginfar, N., Sadeghi, A., Farah, M., Tsopmo, A., Mahoonak, A.S., Hosseinian, F., & Tsopmo, A. (2019). Physicochemical, antioxidant, calcium binding, and angiotensin converting enzyme inhibitory properties of hydrolyzed tomato seed proteins. Journal of Food Biochemistry 43(2): 1–10. https://doi.org/10.1111/jfbc.12721.
- Mirzapour, M., Rezaei, K., Sentandreu, M.A., & Moosavi-movahedi, A.A. (2016). In vitro antioxidant activities of hydrolysates obtained from Iranian wild almond (Amygdalus scoparia) protein by several enzymes. International Journal of Food Sciences and Technology 51: 609–616. https://doi.org/10.1111/ijfs.12996.
- Nioi, C., Kapel, R., Rondags, E., & Marc, I. (2012). Selective extraction, structural characterisation and antifungal activity assessment of napins from an industrial rapeseed meal. Food Chemistry 134(4): 2149–2155. https://doi.org/10.1016/j.foodchem.2012.04.017.
- Nourmohammadi, E., Sadeghimahoonak, A., Ghorbani, M., Alami, M., & Sadeghi, M. (2017). The optimization of the production of anti-oxidative peptides from enzymatic hydrolysis of Pumpkin seed protein. Iranian Food Science and Technology Research Journal 13(1): 14–26. https://doi.org/10.22067/ifstrj.v1395i0.45423.
- Olivares-Galván, S., Marina, M.L., & García, M.C. (2020). Extraction and characterization of antioxidant peptides from fruit residues. Foods 9(8): 1018. https://doi.org/10.3390/FOODS9081018.
- Ranjbar Nadamani, E., Sadeghi Mahoonak, A., Ghorbani, M., Jakobson, S., & Khori, V. (2020). Optimization of Cajanus Cajan’s antioxidant and nutritional characteristics during hydrolysis process by pepsin using response surface method. Iranian Food Science and Technology Research Journal 15(5): 583–596. https://doi.org/10.22067/ifstrj.v15i4.76968.
- Singh, T.P., Siddiqi, R.A., & Sogi, D.S. (2018). Statistical optimization of enzymatic hydrolysis of rice bran protein concentrate for enhanced hydrolysate production by papain. LWT - Food Science and Technology. https://doi.org/10.1016/j.lwt.2018.09.014.
- Talekar, S., Patti, A.F., Singh, R., Vijayraghavan, R., & Arora, A. (2018). From waste to wealth : High recovery of nutraceuticals from pomegranate seed waste using a green extraction process. Industrial Crops & Products 112: 790–802. https://doi.org/10.1016/j.indcrop.2017.12.023.
- Tehranifar, A., Zarei, M., Nemati, Z., Esfandiyari, B., & Reza, M. (2010). Investigation of physico-chemical properties and antioxidant activity of twenty Iranian pomegranate (Punica granatum) cultivars. Scientia Horticulturae 126(2): 180–185. https://doi.org/10.1016/j.scienta.2010.07.001.
- Wang, D., & Shahidi, F. (2018). Protein hydrolysate from turkey meat and optimization of its antioxidant potential by response surface methodology. Poultry Science 97(5): 1824–1831. https://doi.org/10.3382/ps/pex457.
- Xie, J., Du, M., Shen, M., Wu, T., & Lin, L. (2019). Physico-chemical properties, antioxidant activities and angiotensin-I converting enzyme inhibitory of protein hydrolysates from Mung bean (Vigna radiate). Food Chemistry 270(235): 243–250. https://doi.org/10.1016/j.foodchem.2018.07.103.
- Zang, X., Yue, C., Wang, Y., Shao, M., & Yu, G. (2019). Effect of limited enzymatic hydrolysis on the structure and emulsifying properties of rice bran protein. Journal of Cereal Science 85: 168–174. https://doi.org/10.1016/j.jcs.2018.09.001.
|