1. Yousefvand S, Hamidi F, Zendehdel M. The Role of MC3 and MC4 Receptors in Regulation of Food and Water Intake in Broiler Chicks. Journal of Veterinary Research. 2021;76(4):459-66. Doi:10.22059/JVR.2021.285656.2949.
2. Zendehdel M, Parvizi Z, Hassanpour S, Baghbanzadeh A, Hamidi F. Interaction between nociceptin/orphanin FQ and adrenergic system on food intake in neonatal chicken. International Journal of Peptide Research and Therapeutics. 2017;23(1):155-61. Doi: 10.1007/s10989-016-9548-2.
3. Vucetic Z, Reyes TM. Central dopaminergic circuitry controlling food intake and reward: implications for the regulation of obesity. Wiley Interdisciplinary Reviews: Systems Biology and Medicine. 2010;2(5):577-93. Doi:10.1002/wsbm.77.
4. Hamidi F, Yusefvand S. Role of the hypothalamic arcuate nucleus in regulation of food intake (review study). 2017.
5. Juréus A, Cunningham MJ, McClain ME, Clifton DK, Steiner RA. Galanin-like peptide (GALP) is a target for regulation by leptin in the hypothalamus of the rat. Endocrinology. 2000;141(7):2703-6. Doi: 10.1210/endo.141.7.7669.
6. Fraley GS, Leathley E, Lundy N, Chheng E, King I, Kofler B. Effects of alarin on food intake, body weight and luteinizing hormone secretion in male mice. Neuropeptides. 2012;46(2):99-104. Doi:10.1016/j.npep.2011.12.003.
7. Yousefvand S, Hamidi F, Zendehdel M, Parham A. Hypophagic effects of insulin are mediated via NPY1/NPY2 receptors in broiler cockerels. Canadian Journal of Physiology and Pharmacology. 2018;96(12):1301-7. Doi: 10.1139/cjpp-2018-0470.
8. Yousefvand S, Hamidi F, Zendehdel M, Parham A. Effects of insulin and somatostatin on water intake in neonatal chickens. Iranian Journal of Physiology and Pharmacology. 2018;2(3):165-58.
9. Yousefvand S, Hamidi F, Zendehdel M, Parham A. Interaction of neuropeptide Y receptors (NPY1, NPY2 and NPY5) with somatostatin on somatostatin-induced feeding behaviour in neonatal chicken. British Poultry Science. 2019;60(1):71-8. Doi: https://doi.org/10.1080/00071668.2018.1547359.
10. Yousefvand S, Hamidi F, Zendehdel M, Parham A. Investigating The Role of NPY Receptors on Water Intake in Neonatal Broiler Chicken. Veterinary Researches & Biological Products. 2020;33(3):101-7. Doi: 10.22092/VJ.2019.126842.1594.
11. Yousefvand S, Hamidi F, Zendehdel M, Parham A. Survey the effect of insulin on modulating feed intake via NPY receptors in 5-day-old chickens. International Journal of Peptide Research and Therapeutics. 2020;26(1):467-76. Doi:/10.1007/s10989-019-09852-0.
12. Zendehdel M, Hamidi F, Babapour V, Mokhtarpouriani K, Fard RMN. The effect of melanocortin (Mc3 and Mc4) antagonists on serotonin-induced food and water intake of broiler cockerels. Journal of veterinary science. 2012;13(3):229-34. Doi: doi.org/10.4142/jvs.2012.13.3.229.
13. Zendehdel M, Hamidi F, Hassanpour S. The effect of histaminergic system on nociceptin/orphanin FQ induced food intake in chicken. International Journal of Peptide Research and Therapeutics. 2015;21(2):179-86. Doi: 10.1007/s10989-014-9445-5.
14. Zendehdel M, Mokhtarpouriani K, Babapour V, Pourrahimi M, Hamidi F. The role of 5-HT 2A and 5-HT 2C receptors on harmaline-induced eating behavior in 24-h food-deprived broiler cockerels. Iranian Journal of Veterinary Research. 2013;14(2). Doi: 10.22099/IJVR.2013.158.
15. Zendehdel M, Mokhtarpouriani K, Hamidi F, Montazeri R. Intracerebroventricular injection of ghrelin produces hypophagia through central serotonergic mechanisms in chicken. Veterinary research communications. 2013;37(1):37-41. Doi:10.1007/s11259-012-9544-8.
16. Yousefvand S, Hamidi F. Role of paraventricular nucleus in regulation of feeding behaviour and the design of intranuclear neuronal pathway communications. International Journal of Peptide Research and Therapeutics. 2020;26(3):1231-42. Doi: 10.1007/s10989-019-09928-x.
17. Yousefvand S, Hamidi F. The role of ventromedial hypothalamus receptors in the central regulation of food intake. International Journal of Peptide Research and Therapeutics. 2021;27(1):689-702. Doi: 10.1007/s10989-020-10120-9.
18. Yousefvand S, Hamidi F. Role of Lateral Hypothalamus Area in the Central Regulation of Feeding. International Journal of Peptide Research and Therapeutics. 2022;28(3):1-9. Doi: 10.1002/npr2.12080.
19. Zendehdel M, Babapour V, Asadi S. Effects of intracerebroventricular injections of glucose and insulin on food intake in broiler cockerels. Veterinary Researches & Biological Products. 2009;22(1):6-12.
20. Iigaya K, Minoura Y, Onimaru H, Kotani S, Izumizaki M. Effects of feeding-related peptides on neuronal oscillation in the ventromedial hypothalamus. Journal of Clinical Medicine. 2019;8(3):292. Doi: 10.3390/jcm8030292.
21. Van der Werf YD, Witter MP, Groenewegen HJ. The intralaminar and midline nuclei of the thalamus. Anatomical and functional evidence for participation in processes of arousal and awareness. Brain research reviews. 2002;39(2-3):107-40. Doi: 10.1016/j.neubiorev.2015.01.014.
22. Bellinger LL, Bernardis LL. The dorsomedial hypothalamic nucleus and its role in ingestive behavior and body weight regulation: lessons learned from lesioning studies. Physiology & behavior. 2002;76(3):431-42. Doi: 10.1016/s0031-9384(02)00756-4.
23. Imoto D, Yamamoto I, Matsunaga H, Yonekura T, Lee M-L, Kato KX, et al. Refeeding activates neurons in the dorsomedial hypothalamus to inhibit food intake and promote positive valence. Molecular Metabolism. 2021;54:101366. Doi:10.1016/j.molmet.2021.101366.
24. Stamatakis AM, Van Swieten M, Basiri ML, Blair GA, Kantak P, Stuber GD. Lateral hypothalamic area glutamatergic neurons and their projections to the lateral habenula regulate feeding and reward. Journal of Neuroscience. 2016;36(2):302-11. Doi: 10.1016/j.molmet.2021.101366.
25. Baroncini M, Jissendi P, Balland E, Besson P, Pruvo J-P, Francke J-P, et al. MRI atlas of the human hypothalamus. Neuroimage. 2012;59(1):168-80. Doi: 10.1016/j.neuroimage.2011.07.013.
26. Otgon-Uul Z, Suyama S, Onodera H, Yada T. Optogenetic activation of leptin-and glucose-regulated GABAergic neurons in dorsomedial hypothalamus promotes food intake via inhibitory synaptic transmission to paraventricular nucleus of hypothalamus. Molecular metabolism. 2016;5(8):709-15. Doi: 10.1016/j.molmet.2016.06.010.
27. Branch A, Shen P. Central and peripheral regulation of appetite and food intake in Drosophila. Appetite and Food Intake. 2017:17-38. Doi: 10.1201/9781315120171-2.
28. Henderson LA, Macefield VG. The role of the dorsomedial and ventromedial hypothalamus in regulating behaviorally coupled and resting autonomic drive. Handbook of Clinical Neurology. 2021;180:187-200. Doi: 10.1016/B978-0-12-820107-7.00012-4.
29. Zhu JN, Li HZ, Ding Y, Wang JJ. Cerebellar modulation of feeding‐related neurons in rat dorsomedial hypothalamic nucleus. Journal of neuroscience research. 2006;84(7):1597-609. Doi: 10.1002/jnr.21059.
30. Kageyama H, Shiba K, Hirako S, Wada N, Yamanaka S, Nogi Y, et al. Anti-obesity effect of intranasal administration of galanin-like peptide (GALP) in obese mice. Scientific reports. 2016;6(1):1-11. Doi: 10.2174/1381612823666170321095950.
31. Blackshear A, Yamamoto M, Anderson BJ, Holmes PV, Lundström L, Langel Ü, et al. Intracerebroventricular administration of galanin or galanin receptor subtype 1 agonist M617 induces c-Fos activation in central amygdala and dorsomedial hypothalamus. Peptides. 2007;28(5):1120-4. Doi: 10.1016/j.peptides.2007.01.015.
32. Cheung C, Hohmann J, Clifton D, Steiner R. Distribution of galanin messenger RNA-expressing cells in murine brain and their regulation by leptin in regions of the hypothalamus. Neuroscience. 2001;103(2):423-32. Doi: 10.1016/s0306-4522(01)00012-4.
33. Crawley J. The role of galanin in feeding behavior. Neuropeptides. 1999;33(5):369-75.Doi:10.1111/j.1742-4658.2010.07933.x.
34. Kalra SP, Dube MG, Pu S, Xu B, Horvath TL, Kalra PS. Interacting appetite-regulating pathways in the hypothalamic regulation of body weight. Endocrine reviews. 1999;20(1):68-100. Doi: https://doi.org/10.1210/edrv.20.1.0357.
35. Parrado C, Diaz-Cabiale Z, Garcia-Coronel M, Agnati LF, Covenas R, Fuxe K, et al. Region specific galanin receptor/neuropeptide Y Y1 receptor interactions in the tel-and diencephalon of the rat. Relevance for food consumption. Neuropharmacology. 2007;52(2):684-92. Doi: 10.1016/j.neuropharm.2006.09.010.
36. Kuramochi M, Onaka T, Kohno D, Kato S, Yada T. Galanin-like peptide stimulates food intake via activation of neuropeptide Y neurons in the hypothalamic dorsomedial nucleus of the rat. Endocrinology. 2006;147(4):1744-52. Doi: 10.1210/en.2005-0907.
37. Juréus A, Cunningham MJ, Li D, Johnson LL, Krasnow SM, Teklemichael DN, et al. Distribution and regulation of galanin-like peptide (GALP) in the hypothalamus of the mouse. Endocrinology. 2001;142(12):5140-4. Doi: https://doi.org/10.1210/endo.142.12.8542.
38. Lawrence C, Baudoin FH, Luckman S. Centrally administered galanin‐like peptide modifies food intake in the rat: a comparison with galanin. Journal of neuroendocrinology. 2002;14(11):853-60. Doi: https://doi.org/10.1046/j.1365-2826.2002.00846.x.
39. Kageyama H, Kita T, Toshinai K, Guan JL, Date Y, Takenoya F, et al. Galanin‐like peptide promotes feeding behaviour via activation of orexinergic neurones in the rat lateral hypothalamus. Journal of neuroendocrinology. 2006;18(1):33-41. Doi: https://doi.org/10.1111/j.1365-2826.2005.01382.x.
40. Krasnow SM, Fraley GS, Schuh SM, Baumgartner JW, Clifton DK, Steiner RA. A role for galanin-like peptide in the integration of feeding, body weight regulation, and reproduction in the mouse. Endocrinology. 2003;144(3):813-22. Doi: https://doi.org/10.1210/en.2002-220982.
41. Sheriff S, Balasubramaniam A. Inhibitory and stimulatory effects of neuropeptide Y (17-36) on rat cardiac adenylate cyclase activity. Structure-function studies. Journal of Biological Chemistry. 1992;267(7):4680-5. Doi: https://doi.org/10.1016/S0021-9258(18)42887-6.
42. Morton G, Cummings D, Baskin D, Barsh G, Schwartz M. Central nervous system control of food intake and body weight. Nature. 2006;443(7109):289-95. Doi: https://doi.org/10.1038/nature05026.
43. Baik J-H. Dopaminergic control of the feeding circuit. Endocrinology and Metabolism. 2021;36(2):229. Doi: https://doi.org/10.3803/EnM.2021.979.
44. Negishi K, Payant MA, Schumacker KS, Wittmann G, Butler RM, Lechan RM, et al. Distributions of hypothalamic neuron populations coexpressing tyrosine hydroxylase and the vesicular GABA transporter in the mouse. Journal of Comparative Neurology. 2020;528(11):1833-55. Doi: https://doi.org/10.1002/cne.24857.
45. Ramos EJ, Meguid MM, Campos AC, Coelho JC. Neuropeptide Y, α-melanocyte–stimulating hormone, and monoamines in food intake regulation. Nutrition. 2005;21(2):269-79. Doi: https://doi.org/10.1016/j.nut.2004.06.021.
46. Crowley W, Ramoz G, Keefe K, Torto R, Kalra S, Hanson G. Differential effects of methamphetamine on expression of neuropeptide Y mRNA in hypothalamus and on serum leptin and ghrelin concentrations in ad libitum-fed and schedule-fed rats. Neuroscience. 2005;132(1):167-73. Doi: https://doi.org/10.1016/j.neuroscience.2004.11.037.
47. Zhang X, van den Pol AN. Hypothalamic arcuate nucleus tyrosine hydroxylase neurons play orexigenic role in energy homeostasis. Nature neuroscience. 2016;19(10):1341-7. Doi: https://doi.org/10.1038/nn.4372.
48. Meguid MM, Fetissov SO, Varma M, Sato T, Zhang L, Laviano A, et al. Hypothalamic dopamine and serotonin in the regulation of food intake. Nutrition. 2000;16(10):843-57. Doi: https://doi.org/10.1016/s0899-9007(00)00449-4.
49. Hosoda H, Kojima M, Kangawa K. Ghrelin and the regulation of food intake and energy balance. Molecular interventions. 2002;2(8):494. Doi: https://doi.org/10.1124/mi.2.8.494.
50. Carlini VP, Varas MM, Cragnolini AB, Schiöth HB, Scimonelli TN, de Barioglio SR. Differential role of the hippocampus, amygdala, and dorsal raphe nucleus in regulating feeding, memory, and anxiety-like behavioral responses to ghrelin. Biochemical and biophysical research communications. 2004;313(3):635-41. Doi: https://doi.org/10.1016/j.bbrc.2003.11.150.
51. Shiiya T, Nakazato M, Mizuta M, Date Y, Mondal MS, Tanaka M, et al. Plasma ghrelin levels in lean and obese humans and the effect of glucose on ghrelin secretion. The Journal of Clinical Endocrinology & Metabolism. 2002;87(1):240-4. Doi: https://doi.org/10.1210/jcem.87.1.8129.
52. Chuang J-C, Perello M, Sakata I, Osborne-Lawrence S, Savitt JM, Lutter M, et al. Ghrelin mediates stress-induced food-reward behavior in mice. The Journal of clinical investigation. 2011;121(7):2684-92. Doi: https://doi.org/10.1172/JCI57660.
53. Müller TD, Nogueiras R, Andermann ML, Andrews ZB, Anker SD, Argente J, et al. Ghrelin. Molecular metabolism. 2015;4(6):437-60. Doi: https://doi.org/10.1016/j.molmet.2015.03.005.
54. Menyhért J, Wittmann G, Hrabovszky E, Szlávik N, Keller É, Tschöp M, et al. Distribution of ghrelin-immunoreactive neuronal networks in the human hypothalamus. Brain research. 2006;1125(1):31-6. Doi: https://doi.org/10.1016/j.brainres.2006.09.048.
55. Chow KB, Sun J, Chu KM, Cheung WT, Cheng CH, Wise H. The truncated ghrelin receptor polypeptide (GHS-R1b) is localized in the endoplasmic reticulum where it forms heterodimers with ghrelin receptors (GHS-R1a) to attenuate their cell surface expression. Molecular and cellular endocrinology. 2012;348(1):247-54. Doi: https://doi.org/10.1016/j.mce.2011.08.034.
56. Mani BK, Osborne-Lawrence S, Mequinion M, Lawrence S, Gautron L, Andrews ZB, et al. The role of ghrelin-responsive mediobasal hypothalamic neurons in mediating feeding responses to fasting. Molecular metabolism. 2017;6(8):882-96. Doi: https://doi.org/10.1016/j.molmet.2017.06.011.
57. Sun Y, Wang P, Zheng H, Smith RG. Ghrelin stimulation of growth hormone release and appetite is mediated through the growth hormone secretagogue receptor. Proceedings of the National Academy of Sciences. 2004;101(13):4679-84. Doi: https://doi.org/10.1073/pnas.0305930101.
58. Blum ID, Patterson Z, Khazall R, Lamont EW, Sleeman MW, Horvath TL, et al. Reduced anticipatory locomotor responses to scheduled meals in ghrelin receptor deficient mice. Neuroscience. 2009;164(2):351-9. Doi: https://doi.org/10.1016/j.neuroscience.2009.08.009.
59. Tanaka M, Naruo T, Muranaga T, Yasuhara D, Shiiya T, Nakazato M, et al. Increased fasting plasma ghrelin levels in patients with bulimia nervosa. European Journal of Endocrinology. 2002;146(6):R1-R3. Doi: 10.1530/eje.0.146r001.
60. Cowley MA, Smith RG, Diano S, Tschöp M, Pronchuk N, Grove KL, et al. The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron. 2003;37(4):649-61. Doi: 10.1016/s0896-6273(03)00063-1.
61. Bi S, Kim YJ, Zheng F. Dorsomedial hypothalamic NPY and energy balance control. Neuropeptides. 2012;46(6):309-14. Doi: https://doi.org/10.1016/j.npep.2012.09.002.
62. Rüter J, Kobelt P, Tebbe JJ, Veh R, Wang L, Klapp BF, et al. Intraperitoneal injection of ghrelin induces Fos expression in the paraventricular nucleus of the hypothalamus in rats. Brain research. 2003;991(1-2):26-33. Doi: https://doi.org/10.1016/j.brainres.2003.07.005.
63. Shintani M, Ogawa Y, Ebihara K, Aizawa-Abe M, Miyanaga F, Takaya K, et al. Ghrelin, an endogenous growth hormone secretagogue, is a novel orexigenic peptide that antagonizes leptin action through the activation of hypothalamic neuropeptide Y/Y1 receptor pathway. Diabetes. 2001;50(2):227-32. Doi: https://doi.org/10.2337/diabetes.50.2.227.
64. Wren AM, Small CJ, Abbott CR, Dhillo WS, Seal LJ, Cohen MA, et al. Ghrelin causes hyperphagia and obesity in rats. Diabetes. 2001;50(11):2540-7. Doi: 10.2337/diabetes.50.11.2540.
65. Kobelt P, Wisser A-S, Stengel A, Goebel M, Inhoff T, Noetzel S, et al. Peripheral injection of ghrelin induces Fos expression in the dorsomedial hypothalamic nucleus in rats. Brain research. 2008;1204:77-86. Doi: 10.1016/j.brainres.2008.01.054.
66. Lawrence CB, Snape AC, Baudoin FM-H, Luckman SM. Acute central ghrelin and GH secretagogues induce feeding and activate brain appetite centers. Endocrinology. 2002;143(1):155-62. Doi: 10.1210/endo.143.1.8561.
67. Al Massadi O, López M, Tschöp M, Diéguez C, Nogueiras R. Current understanding of the hypothalamic ghrelin pathways inducing appetite and adiposity. Trends in neurosciences. 2017;40(3):167-80. Doi: 10.1016/j.tins.2016.12.003.
68. Perello M, Dickson S. Ghrelin signalling on food reward: a salient link between the gut and the mesolimbic system. Journal of neuroendocrinology. 2015;27(6):424-34. Doi: 10.1111/jne.12236.
69. Brunetti L, Recinella L, Orlando G, Michelotto B, Di Nisio C, Vacca M. Effects of ghrelin and amylin on dopamine, norepinephrine and serotonin release in the hypothalamus. European journal of pharmacology. 2002;454(2-3):189-92. Doi: 10.1016/s0014-2999(02)02552-9.
70. Fetissov SO, Kopp J, Hökfelt T. Distribution of NPY receptors in the hypothalamus. Neuropeptides. 2004;38(4):175-88. Doi: 10.1016/j.npep.2004.05.009.
71. Zieba DA, Biernat W, Szczesna M, Kirsz K, Barć J, Misztal T. Changes in expression of the genes for the leptin signaling in hypothalamic-pituitary selected areas and endocrine responses to long-term manipulation in body weight and resistin in ewes. International Journal of Molecular Sciences. 2020;21(12):4238. Doi:10.3390/ijms21124238.
72. Trotta M, Bello EP, Alsina R, Tavella MB, Ferrán JL, Rubinstein M, et al. Hypothalamic Pomc expression restricted to GABAergic neurons suppresses Npy overexpression and restores food intake in obese mice. Molecular metabolism. 2020;37:100985. Doi: 10.1016/j.molmet.2020.100985.
73. Wang R, Yuan J, Zhang C, Wang L, Liu Y, Song L, et al. Neuropeptide Y-positive neurons in the dorsomedial hypothalamus are involved in the anorexic effect of Angptl8. Frontiers in Molecular Neuroscience. 2018;11:451. Doi: 10.3389/fnmol.2018.00451.
74. Acuna-Goycolea C, Tamamaki N, Yanagawa Y, Obata K, van den Pol AN. Mechanisms of neuropeptide Y, peptide YY, and pancreatic polypeptide inhibition of identified green fluorescent protein-expressing GABA neurons in the hypothalamic neuroendocrine arcuate nucleus. Journal of Neuroscience. 2005;25(32):7406-19. Doi: 10.1523/JNEUROSCI.1008-05.2005.
75. Yang L, Scott KA, Hyun J, Tamashiro KL, Tray N, Moran TH, et al. Role of dorsomedial hypothalamic neuropeptide Y in modulating food intake and energy balance. Journal of Neuroscience. 2009;29(1):179-90. Doi: 10.1523/JNEUROSCI.4379-08.2009.
76. Elmquist JK, Ahima RS, Elias CF, Flier JS, Saper CB. Leptin activates distinct projections from the dorsomedial and ventromedial hypothalamic nuclei. Proceedings of the National Academy of Sciences. 1998;95(2):741-6. Doi: 10.1073/pnas.95.2.741.
77. Vong L, Ye C, Yang Z, Choi B, Chua Jr S, Lowell BB. Leptin action on GABAergic neurons prevents obesity and reduces inhibitory tone to POMC neurons. Neuron. 2011;71(1):142-54. Doi: 10.1016/j.neuron.2011.05.028.
78. Dodd GT, Worth AA, Nunn N, Korpal AK, Bechtold DA, Allison MB, et al. The thermogenic effect of leptin is dependent on a distinct population of prolactin-releasing peptide neurons in the dorsomedial hypothalamus. Cell metabolism. 2014;20(4):639-49. Doi: 10.1016/j.cmet.2014.07.022.
79. Raman PG. Central nervous system control of glucose homeostasis. Open Journal of Endocrine and Metabolic Diseases. 2017;7(12):227-34. Doi: 10.4236/ojemd.2017.712020.
80. Faber CL, Deem JD, Phan BA, Doan TP, Ogimoto K, Mirzadeh Z, et al. Leptin receptor neurons in the dorsomedial hypothalamus regulate diurnal patterns of feeding, locomotion, and metabolism. Elife. 2021;10. Doi: 10.7554/eLife.63671.
81. Berthoud H-R. Multiple neural systems controlling food intake and body weight. Neuroscience & Biobehavioral Reviews. 2002;26(4):393-428. Doi: 10.1016/S0149-7634(02)00014-3.