- Aghdam, M.S., Kakavand, F., Rabiei, V., Zaare-Nahandi, F., & Razavi, F. (2019). γ-Aminobutyric acid and nitric oxide treatments preserve sensory and nutritional quality of cornelian cherry fruits during postharvest cold storage by delaying softening and enhancing phenols accumulation. Scientia Horticulturae, 246, 812-817. https://doi.org/10.1016/j.scienta.2018.11.064
- Aghdam, M.S., Razavi, F., & Karamneghad, F. (2016). Maintaining the postharvest nutritional quality of peach fruits by γ-Aminobutyric acid. Iranian Journal of Plant Physiology, 5(4), 1457-1463.
- Balaguera-López, H.E., Martínez-Cárdenas, C.A., & Herrera-Arévalo, A. (2016). Effect of the maturity stage on the postharvest behavior of cape gooseberry (Physalis peruviana) fruits stored at room temperature. Bioagro, 28(2), 117-124.
- Brand-Williams, W., Cuvelier, M.E., & Berset, C.L.W.T. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food science and Technology, 28(1), 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
- Cárdenas-Barboza, L.C., Paredes-Córdoba, A.C., Serna-Cock, L., Guancha-Chalapud, M., & Torres-León, C. (2021). Quality of Physalis peruviana fruits coated with pectin and pectin reinforced with nanocellulose from peruviana calyces. Heliyon, 7(9), e07988. https://doi.org/10.1016/j.heliyon.2021.e07988
- Cheng, G.W., & Breen, P.J. (1991). Activity of phenylalanine ammonia-lyase (PAL) and concentrations of anthocyanins and phenolics in developing strawberry fruit. Journal of the American Society for Horticultural Science, 116(5), 865-869. https://doi.org/10.21273/JASHS.116.5.865
- Etzbach, L., Pfeiffer, A., Weber, F., & Schieber, A. (2018). Characterization of carotenoid profiles in goldenberry (Physalis peruviana) fruits at various ripening stages and in different plant tissues by HPLC-DAD-APCI-MSn. Food Chemistry, 245, 508-517. https://doi.org/10.1016/j.foodchem.2017.10.120
- Gao, H., Wu, S., Zeng, Q., Li, P., & Guan, W. (2018). Effects of exogenous γ-aminobutyric acid treatment on browning and food-borne pathogens in fresh-cut apples. Postharvest Biology and Technology, 146, 1-8. https://doi.org/10.1016/j.postharvbio.2018.08.007
- Ge, Y., Duan, B., Li, C., Tang, Q., Li, X., Wei, M., & Li, J. (2018). γ-Aminobutyric acid delays senescence of blueberry fruit by regulation of reactive oxygen species metabolism and phenylpropanoid pathway. Scientia Horticulturae, 240, 303-309. https://doi.org/10.1016/j.scienta.2018.06.044
- González-Locarno, M., Maza Pautt, Y., Albis, A., López, E.F., & Grande Tovar, C.D. (2020). Assessment of chitosan-rue (Ruta graveolens) essential oil-based coatings on refrigerated cape gooseberry (Physalis peruviana L.) quality. Applied Sciences, 10(8), 2684. https://doi.org/10.3390/app10082684
- Guevara Collazos, A.J., Villagran Munar, E.A., Velasquez Ayala, F.A., & González Velandia, K.D. (2019). Evaluation of the postharvest behavior of cape gooseberry from conventional and agroecological production systems. Revista Mexicana de Ciencias Agrícolas, 10(6), 1273-1285. https://doi.org/10.29312/remexca.v10i6.1492
- Habibi, F., Ramezanian, A., Guillén, F., Serrano, M., & Valero, D. (2020). Blood Oranges maintain bioactive compounds and nutritional quality by postharvest treatments with γ-aminobutyric acid, methyl jasmonate or methyl salicylate during cold storage. Food Chemistry, 306, 125634. https://doi.org/10.1016/j.foodchem.2019.125634
- Habibi, F., Ramezanian, A., Rahemi, M., Eshghi, S., Guillén, F., Serrano, M., & Valero, D. (2019). Postharvest treatments with γ‐aminobutyric acid, methyl jasmonate, or methyl salicylate enhance chilling tolerance of blood orange fruit at prolonged cold storage. Journal of the Science of Food and Agriculture, 99(14), 6408-6417. https://doi.org/10.1002/jsfa.9920
- Hammetjo, B., Asghari, M.R., & Hasanpour, H. (2019). Effect of post-harvest application of gamma-aminobutyric acid and salicylic acid on the biochemical characteristics of Shabloon plum. Pomology Research, 4(2), 18-28. (In Persian)
- Heydarnazhad, R., Ghahremani, Z., Barzegar, T., & Rabiei, V. (2019). The effects of harvesting stage and chitosan coating on quality and shelf-life of Physalis angulata Iranian Journal of Horticultural Science, 50(1), 173-186.
- Houshani, M., Mianabadi, M., Aghdasi, M., & Azimhosseini, M. (2015). Evaluation of methanolic extract antioxidant activity of the Physalis alkekengi during different stages of growth. Journal of Plant Biology, 14(4), 101-114.
- Hosseinipoor, B., Nazoori, F., & Mirdehghan, S.H. (2021). Study on storage of fresh pistachio cultivar ahmad aghaie using gamma aminobutyric acid and carnuba wax. Iranian Journal of Food Science and Technology, 110(18), 153-163. (In Persian with English abstract)
- Kader, A.A. (2002). Postharvest technology of horticultural crops, University of California. Agriculture and Natural Resources, Publication 3311: 535.
- Kang, H.M., & Saltveit, M.E., (2002). Antioxidant capacity of lettuce leaf tissue increases after wounding. Journal of Agricultural and Food Chemistry, 50, 7536–7541. https://doi.org/10.1021/jf020721c
- Licodiedoff, S., Koslowski, L.A.D., Scartazzini, L., Monteiro, A.R., Ninow, J.L., & Borges, C.D. (2016). Conservation of physalis by edible coating of gelatin and calcium chloride. International Food Research Journal, 23(4), 1629-1634.
- Mekontso, F.N., Duan, W., El Hadji Malick Cisse, T.C., & Xu, X. (2021). Alleviation of postharvest chilling injury of carambola fruit by γ-aminobutyric acid: physiological, biochemical, and structural characterization. Frontiers in Nutrition, 8, https://doi.org/10.3389/fnut.2021.752583
- Nazoori, F., Zamani Bahramabadi, E., Mirdehghan, S.H., & Rafie, A. (2020). Extending the shelf life of pomegranate (Punica granatum) by GABA coating application. Journal of Food Measurement and Characterization, 14(5), 2760-2772. https://doi.org/10.1007/s11694-020-00521-1
- Niazi, Z., Razavi, F., Khademi, O., & Aghdam, M.S. (2021). Exogenous application of hydrogen sulfide and γ-aminobutyric acid alleviates chilling injury and preserves quality of persimmon fruit (Diospyros kaki, cv. Karaj) during cold storage. Scientia Horticulturae, 285, 110198. https://doi.org/10.1016/j.scienta.2021.110198
- Olivares-Tenorio, M.L., Dekker, M., van Boekel, M.A., & Verkerk, R. (2017). Evaluating the effect of storage conditions on the shelf life of cape gooseberry (Physalis peruviana). LWT, 80, 523-530. https://doi.org/10.1016/j.lwt.2017.03.027
- Palma, F., Carvajal, F., Jiménez-Muñoz, R., Pulido, A., Jamilena, M., & Garrido, D. (2019). Exogenous γ-aminobutyric acid treatment improves the cold tolerance of zucchini fruit during postharvest storage. Plant Physiology and Biochemistry, 136, 188-195. https://doi.org/10.1016/j.plaphy.2019.01.023
- Parsa, Z., Roozbehi, S., Hosseinifarahi, M., Radi, M., & Amiri, S. (2020). Integration of pomegranate peel extract (PPE) with calcium sulphate (CaSO4): A friendly treatment for extending shelf‐life and maintaining postharvest quality of sweet cherry fruit. Journal of Food Processing and Preservation, 45(1), e15089. https://doi.org/10.1111/jfpp.15089
- Rastegar, S., Khankahdani, H.H., & Rahimzadeh, M. (2020). Effect of γ-aminobutyric acid on the antioxidant system and biochemical changes of mango fruit during storage. Journal of Food Measurement and Characterization, 14(2), 778-789. https://doi.org/10.1007/s11694-019-00326-x
- Razavi, F., Mahmoudi, R., Rabiei, V., Aghdam, M.S., & Soleimani A. (2018). Glycine betaine treatment attenuates chilling injury and maintains nutritional quality of hawthorn fruit during storage at low temperature. Scientia Horticulturae, 233, 188-194. https://doi.org/10.1016/j.scienta.2018.01.053
- Raznjoo, S. (1997). Manual of analysis of fruit and vegetables. 9th ed. Tata MCGraw-Hill. New Dehli.
- Rolle, L., Torchio, F., Giacosa, S., & Gerbi, V. (2009). Modifications of mechanical characteristics and phenolic composition in berry skins and seeds of Mondeuse winegrapes throughout the on‐vine drying process. Journal of the Science of Food and Agriculture, 89(11), 1973-1980. https://doi.org/10.1002/jsfa.3686
- Sheng, L., Shen, D., Luo, Y., Sun, X., Wang, J., Luo, T., Zeng, Y., Xu, J., Deng, X., & Cheng Y. (2017). Exogenous γ-aminobutyric acid treatment affects citrate and amino acid accumulation to improve fruit quality and storage performance of postharvest citrus fruit. Food Chemistry, 216, 138-145. https://doi.org/10.1016/j.foodchem.2016.08.024
- Sun, Q., Zhang, N., Wang, J., Zhang, H., Li, D., Shi, J., Li, R., Weeda, S., Zhao, B., Ren, S., & Guo, Y.D. (2015). Melatonin promotes ripening and improves quality of tomato fruit during postharvest life. Journal of Experimental Botany, 66(3), 657-668. https://doi.org/10.1093/jxb/eru332
- Taghipour, L., & Assar, P. (2021). Postharvest hot water treatment as a non-chemical alternative to fungicide: physicochemical changes and adaptability to oxidative stress in sweet lime fruit. Iranian Journal of Horticultural Science and Technology, 22(4), 483-496. (In Persian with English abstract)
- Taghipour, L., Rahemi, M., & Assar, P. (2015). Determining the physicochemical changes and time of chilling injury incidence during cold storage of pomegranate fruit. Journal of Agricultural Science, 60(4), 465-476. https://doi.org/10.2298/JAS1504465T
- Valdenegro, M., Fuentes, L., Herrera, R., & Moya-León, M.A. (2012). Changes in antioxidant capacity during development and ripening of goldenberry (Physalis peruviana) fruit and in response to 1-methylcyclopropene treatment. Postharvest Biology and Technology, 67, 110-117. https://doi.org/10.1016/j.postharvbio.2011.12.021
- Wang, Y., Luo, Z., Huang, X., Yang, K., Gao, S., & Du, R. (2014). Effect of exogenous γ-aminobutyric acid (GABA) treatment on chilling injury and antioxidant capacity in banana peel. Scientia Horticulturae, 168, 132-137. https://doi.org/10.1016/j.scienta.2014.01.022
- Yang, A., Cao, S., Yang, Z., Cai, Y., & Zheng, Y. (2011). γ-Aminobutyric acid treatment reduces chilling injury and activates the defence response of peach fruit. Food Chemistry, 129(4), 1619-1622. https://doi.org/10.1016/j.foodchem.2011.06.018
- Yen, G.C., & Duh, P.D. (1994). Scavenging effect of methanolic extracts of peanut hulls on free-radical and active-oxygen species. Journal of Agricultural and Food Chemistry, 42(3), 629-632. https://doi.org/10.1021/jf00039a005
- Yu, C., Zeng, L., Sheng, K., Chen, F., Zhou, T., Zheng, X., & Yu, T. (2014). γ-Aminobutyric acid induces resistance against Penicillium expansum by priming of defence responses in pear fruit. Food Chemistry, 159, 29-37. https://doi.org/10.1016/j.foodchem.2014.03.011
Zarei, L., Koushesh Saba, M., & Vafaee, Y. (2020). Effect of gamma-amino-butyric acid (GABA) foliar application on chilling and postharvest quality of tomato (cv. Newton). Journal of Plant Productions, 43(2), 199-212. https://doi.org/10.22055/ppd.2020.27796.1681
|