- Abelenda, J.A., Bergonzi, S., Oortwijn, M., Sonnewald, S., Du, M., Visser, R.G., & Bachem, C.W. (2019). Source-sink regulation is mediated by interaction of an FT homolog with a sweet protein in potato. Current Biology, 29(7), 1178-1186.
- Al-Jibouri, A.M.J., Abed, A.S., Hussin, Z.S., & Abdulhusein, A.A. (2017). Effect of nanoparticles on in vitro microtuberization of potato cultivars (Solanum tuberosum). Journal of Biotechnology Research Center, 11(1), 57–61. https://doi.org/10.24126/jobrc.2017.11.1.504
- Al-Safadi, B., Ayyoubi, Z., & Jawdat, D. (2000). The effect of gamma irradiation on potato microtuber production in vitro. Plant Cell, Tissue and Organ Culture, 61(3), 183-187.
- Anjum, N.A., Singh, N., Singh, M.K., Sayeed, I., Duarte, A.C., Pereira, E., & Ahmad, I. (2014). Single-bilayer graphene oxide sheet impacts and underlying potential mechanism assessment in germinating faba bean (Vicia faba). Science of the Total Environment, 472, 834-841.
- Begum, P., Ikhtiari, R., & Fugetsu, B. (2011). Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce. Carbon, 49(12), 3907-3919.
- Bolandi, A.R., Hamidi, H., & Beidokhti, R. (2013). The effect of hormones and photoperiod on in vitro microtuberization of two potato cultivars. Journal of Horticultural Science, 27(2), 158-165. https://doi.org/10.22067/jhorts4.v0i0.24814
- Chen, J., Yang, L., Li, S., & Ding, W. (2018). Various physiological response to graphene oxide and amine-functionalized graphene oxide in wheat (Triticum aestivum). Molecules, 23(5), 1104.
- Chen, L., Wang, C., Li, H., Qu, X., Yang, S.T., & Chang, X.L. (2017). Bioaccumulation and toxicity of 13C-skeleton labeled graphene oxide in wheat. Environmental Science & Technology, 51(17), 10146-10153.
- Chen, Z., Zhao, J., Qiao, J., Li, W., Guan, Z., Liu, Z., & Zhu, H. (2022). Graphene-mediated antioxidant enzyme activity and respiration in plant roots. ACS Agricultural Science & Technology, 2(3), 646-660.
- Cheng, F., Liu, Y.F., Lu, G.Y., Zhang, X.K., Xie, L.L., Yuan, C.F., & Xu, B.B. (2016). Graphene oxide modulates root growth of Brassica napus and regulates ABA and IAA concentration. Journal of Plant Physiology, 193, 57-63.
- Coleman, W.K., Donnelly, D.J., & Coleman, S.E. (2001). Potato microtubers as research tools: a review. American Journal of Potato Research, 78, 47-55.
- Delker, C., Raschke, A., & Quint, M. (2008). Auxin dynamics: the dazzling complexity of a small molecule’s message. Planta, 227, 929-941.
- (2022). World food and agriculture – Statistical Ppchetbook. )2018(. Rome. 254 pp. Licence: CC BY-NC-SA 3.0 IGO.
- Forstner, C., Orton, T.G., Skarshewski, A., Wang, P., Kopittke, P.M., & Dennis, P.G. (2019). Effects of graphene oxide and graphite on soil bacterial and fungal diversity. Science of the Total Environment, 671, 140-148.
- Georgailas, V., Perman, J.A., Tucek, J., & Zboril, R. (2015). Broad family of carbon nanoallotropes: classifiation, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chemical reviews, 115(11), 4744-4822. https://doi.org/1021/cr500304f
- Gopal, J., Chamail, A., & Sarkar, D. (2004). In vitro production of microtubers for conservation of potato germplasm: Effect of genotype, abscisic acid and sucrose. Developmental Biology Plant, 40, 485-490.
- Guo, X., Zhao, J., Wang, R., Zhang, H., Xing, B., Naeem, M., & Wu, J. (2021). Effects of graphene oxide on tomato growth in different stages. Plant Physiology and Biochemistry, 162, 447-455. https://doi.org/1016/j.plaphy.2021.03.013
- Hamza, E.M. (2019). Improvement of potato micropropagation and microtubers formation as affected by nanoparticles. Middle East Journal, 8(2), 525-532.
- He, Y., Hu, R., Zhong, Y., Zhao, X., Chen, Q., & Zhu, H. (2018). Graphene oxide as a water transporter promoting germination of plants in soil. Nano Research, 11, 1928-1937.
- Hoque, M.E. (2010). In vitro tuberization in potato (Solanum tuberosum). Plant Omics Journal, 3, 7-11.
- Hu, X., Mu, L., Kang, J., Lu, K., Zhou, R., & Zhou, Q. (2014). Humic acid acts as a natural antidote of graphene by regulating nanomaterial translocation and metabolic fluxes in vivo. Environmental Science & Technology, 48(12), 6919-6927.
- Huang, C., Xia, T., Niu, J., Yang, Y., Lin, S., Wang, X., & Xing, B. (2018). Transformation of 14C‐Labeled Graphene to 14CO2 in the shoots of a rice plant. Angewandte Chemie, 130(31), 9907-9911.
- Jami, J.M., & Ghorbani, M. (2018). The effect of carbon nanotubes on in vitro micropropagation of two potato (Solanum tuberosum L.) cultivars. 4th Iranian Scientific Congress on Development and Promotion of Agricultural Sciences, Natural Resources and Environment of Iran.
- Jiao, J., Cheng, F., Zhang, X., Xie, L., Li, Z., Yuan, C., & Zhang, L. (2016). Preparation of graphene oxide and its mechanism in promoting tomato roots growth. Journal of Nanoscience and Nanotechnology, 16(4), 4216-4223.
- Kah, M., Tufenkji, N., & White, J.C. (2019). Nano-enabled strategies to enhance crop nutrition and protection. Nature Nanotechnology, 14(6), 532-540.
- Khodakovskaya, M.V., Kim, B.S., Kim, J.N., Alimohammadi, M., Dervishi, E., Mustafa, T., & Cernigla, C.E. (2013). Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community. Small, 9(1), 115-123.
- Khodakovskaya, M., Dervishi, E., Mahmood, M., Xu, Y., Li, Z., Watanabe, F., & Biris, A.S. (2009). Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano, 3(10), 3221-3227.
- Lalwani, G., Xing, W., & Sitharaman, B. (2014). Enzymatic degradation of oxidized and reduced graphene nanoribbons by lignin peroxidase. Journal of Materials Chemistry B, 2(37), 6354-6362.3.
- Lin, D., & Xing, B. (2007). Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environmental Pollution, 150(2), 243-250.
- Liu, D., Lü, Y., & Luo, H. (2022). Effects of oxidized graphene on seed germination and seedling growth of Amorpha fruticose. Seed, 41, 14-18.
- Liu, R., Zhao, M., Zheng, X., Wang, Q., Huang, X., Shen, Y., & Chen, B. (2021). Reduced graphene oxide/TiO2 (B) immobilized on nylon membrane with enhanced photocatalytic performance. Science of The Total Environment, 799, 149370.
- Liu, S., Wei, H., Li, Z., Li, S., Yan, H., He, Y., & Tian, Z. (2015). Effects of graphene on germination and seedling morphology in rice. Journal of Nanoscience and Nanotechnology, 15(4), 2695-2701. https://doi.org/1166/jnn.2015.9254
- Mahendran, D., Geetha, N., & Venkatachalam, P. (2019). Role of silver nitrate and silver nanoparticles on tissue culture medium and enhanced the plant growth and development. In In vitro Plant Breeding towards Novel Agronomic Traits (pp. 59-74). Springer, Singapore.
- Mahmodi Soreh, S., Motallebi Azar, A., Panahandeh, J., Gohari, G., & Jahanian, A. (2023). Effect of glycine betaine nanocomposite coated with chitosan and moderate salinity stress on in vitro microtuberization of potato (Solanum tuberosum) cv. Agria. Journal of Horticultural Science, 37(2), 437-451. (In Persian with English abstract). https://doi.org/10.22067/jhs.2022.76343.1165
- Maliki, R., & Mohammadi, M. (2017). Application of nanotechnology in agriculture and food industry (case study of Sahar Hamedan Food Industry Company), 11th National Congress of Biosystem Mechanical Engineering and Mechanization of Iran, Hamedan.
- Møller, I.M., Jensen, P.E., & Hansson, A. (2007). Oxidative modifications to cellular components in plants. Annual Rev. Plant Biology, 58, 459-481.
- Nair, R.R., Wu, H.A., Jayaram, P.N., Grigorieva, I.V., & Geim, A.K. (2012). Unimpeded permeation of water through helium-leak–tight graphene-based membranes. Science, 335(6067), 442-444.
- Noh, S.A., Lee, H.S., Huh, E.J., Huh, G.H., Paek, K.H., Shin, J.S., & Bae, J.M. (2010). SRD1 is involved in the auxin-mediated initial thickening growth of storage root by enhancing proliferation of metaxylem and cambium cells in sweetpotato (Ipomoea batatas). Journal of Experimental Botany, 61(5), 1337-1349.
- Pots, A.M., Gruppen, H., van Diepenbeek, R., van der Lee, J.J., van Boekel, M.A.J.S., Wijngaards, G., & Voragen, A.G.J. (1999). The effect of storage of whole potatoes of three cultivars on the patatin and protease inhibitor content; a study using capillary electrophoresis and MALDI‐TOF mass spectrometry. Journal of the Science of Food and Agriculture, 79(12), 1557-1564.
- Pumera, M., Ambrosi, A., Bonanni, A., Chng, E.L.K., & Poh, H.L. (2010). Graphene for electrochemical sensing and biosensing. TrAC Trends in Analytical Chemistry, 29(9), 954-965.
- Sasani, R., Khazaei, H.R., & Nezami, A. (2010). Effects of Gibberellin, Benzyl adenine, Zeatine hormones and temperature on dormancy breaking of potato minituber (Solanum tuberosum). Journal of Horticultural Science, 23(2).
- Sheikhi, F., Roayaei Ardakani, M., Enayatzamir, N., & Ghezelbash, G. (2014). Isolation and identification of two laccase producer fungi from bagass and sugarcane rhizosphere. Cellular and Molecular Research (Iranian Journal of Biology), 27(3), 389-398.
- Simm, S., Scharf, K.D., Jegadeesan, S., Chiusano, M.L., Firon, N., & Schleiff, E. (2016). Survey of genes involved in biosynthesis, transport, and signaling of phytohormones with focus on Solanum lycopersicum. Bioinformatics and Biology insights, 10, BBI-S38425.
- Wu, X.J., Wang, G.L., Song, X., Xu, Z.S., Wang, F., & Xiong, A.S. (2016). Regulation of auxin accumulation and perception at different developmental stages in carrot. Plant Growth Regulation, 80, 243-251.
- Yijia, H., Ruirui, H., Yujia, Z., Xuanliang, Z., Qiao, C., & Hongwei, Z. (2017). Graphene oxide as a water transporter promoting germination of plants in soil. Nano Research, 1–10.
- Yin, L., Wang, Z., Wang, S., Xu, W., & Bao, H. (2018). Effects of Graphene Oxide and/or Cd 2+ on Seed germination, seedling growth, and uptake to Cd 2+ in solution culture. Water, Air, & Soil Pollution, 229(5), 151.
- Zhang, P., Guo, Z., Luo, W., Monikh, F.A., Xie, C., Valsami-Jones, E., & Zhang, Z. (2020). Graphene oxide-induced pH alteration, iron overload, and subsequent oxidative damage in rice (Oryza sativa): A new mechanism of nanomaterial phytotoxicity. Environmental Science & Technology, 54(6), 3181-3190.
- Zhang, X., Cao, H., Zhao, J., Wang, H., Xing, B., Chen, Z., & Zhang, J. (2021). Graphene oxide exhibited positive effects on the growth of Aloe vera Physiology and Molecular Biology of Plants, 27, 815-824. https://doi.org/10.1007/s12298-021-00979-3
|