- Adams, S.R., Valdes, V.M., & Langton, F.A. (2008). Why does low intensity, long-day lighting promote growth in petunia, impatiens, and tomato? The Journal of Horticultural Science and Biotechnology, 83(5), 609-615. https://doi.org/10.1080/14620316.2008.11512431.
- Astolfi, S., de Biasi, M.G., & Passera, C. (2001). Effect of irradiance-sulphur interaction on enzyme of carbon, nitrogen, and Sulphur metabolism in maize plant. Photosynthetica, 39, 177-181. https://doi.org/10.1023/A:1013762605766.
- Bernie, G., & Perilleux, C. (2005). A physiological overview of the genetics of flowering time control. Plant Biotechnology Journal, 3, 3-16. https://doi.org/1111/j.1467-7652.2004.00114.x.
- Bian, Z.H., Cheng, R.F., Yang, Q.C., Wang, J., & Lu, C. (2016). Continuous light from red, blue, and green light-emitting diodes reduces nitrate content and enhances phytochemical concentrations and antioxidant capacity in lettuce. Journal of the American Society for Horticultural Science, 141, 186–195. https://doi.org/10.21273/JASHS.141.2.186.
- Bian, Z.H., Yang, Q.C., & Liu, W.K. (2015). Effects of light quality on the accumulation of phytochemicals in vegetables produced in controlled environments: a review. Journal of the Science of Food and Agriculture, 95(5), 869–877. https://doi.org/1002/jsfa.6789
- Biswal, A.K., Pattanayak, G.K., Pandey, S.S., Leelavathi, S., Reddy, V.S., & Tripathy, B.C. (2012). Light intensitydependent modulation of chlorophyll b biosynthesis and photosynthesis by overexpression of chlorophyllide a oxygenase in tobacco. Plant Physiology, 159, 433-449. https://doi.org/10.1104/pp.112.195859.
- Bourget, C.M. (2008) An introduction to light-emitting diodes. HortScience, 43, 1944-1946. https://doi.org/10.21273/HORTSCI.43.7.1944.
- Cao, G., Zhang, G., Yu, J., & Ma, Y. (2013). Effects of different led light qualities on cucumber seedling growth and chlorophyll fluorescence parameters. Scientia Agricultura Sinica, 46(6), 1297–1304.
- Cerdan, P.D., & Chory, J. (2003). Regulation of flowering time by light quality. Nat, 423, 881-885. https://doi.org/10.1038/nature01636
- Chen, M., Chory, J., & Fankhauser, C. (2004). Light signal transduction in higher plants. Annual Review of Genetics, 38(1), 87–117. https://doi.org/10.1146/annurev.genet.38.072902.092259
- Cosgrove, D.J. (1981). Rapid suppression of growth by blue light. Plant Physiology, 67, 584-590. https://doi.org/10.1104/pp.67.3.584
- Fan, X., Zang, J., Xu, Z., Guo, S., Jiao, X., Liu, X., & Gao, Y. (2013). Effects of different light quality on growth, chlorophyll concentration and chlorophyll biosynthesis precursors of non-heading Chinese cabbage (Brassica campestris). Acta Physiologiae Plantarum, 35, 2721-2726. https://doi.org/10.1007/s11738-013-1304-z
- Fukuda, N., Ajima, C., Yukawa, T., & Olsen, J. (2016). Antagonistic action of blue and red light on shoot elongation in petunia depends on gibberellin, but the effects on flowering are not generally linked to gibberellin. Environmental and Experimental Botany, 121, 102-111. https://doi.org/10.1016/j.envexpbot.2015.06.014
- Goto, E. (2003). Effect of light quality on growth of crop plants under artificial lighting. Environmental Control in Biology, 41, 121-132. https://doi.org/10.2525/ecb1963.41.12
- Hanyu, H., & Shoji, K. (2000) Effect of blue light and red light on kidney bean plants grown under combined radiation from narrow-band light source. Environmental Control in Biology, 38, 13-24. http://doi.org/10.2525/ecb1963.38.13
- Hemming, S., Mohammadkhani, V., & Dueck, T. (2008). Diffuse greenhouse coveringmaterials–material technology, measurements and evaluation of optical properties. Acta Horticulturae, 469–475. http://doi.org/17660/ActaHortic.2008.797.68
- Heo, J.W., Kang, D.H., Bang, H.S., Hong, S.G., Chun, C.H., & Kang, K.K. (2012). Early growth, pigmentation, protein content, and phenylalanine ammonia-lyase activity of red curled lettuces grown under different lighting conditions. Korean Journal of Horticultural Science and Technology, 30(1), 6–12. http://doi.org/10.7235/hort.2012.11118
- Hernández, R., & Kubota, C. (2016). Physiological responses of cucumber seedlings under different blue and red photon flux ratios using LEDs. Environmental and Experimental Botany, 121, 66-74.
- Hernández, R., & Kubota, C. (2015). Physiological, morphological, and energy-use efficiency comparisons of LED and HPS supplemental lighting for cucumber transplant production. HortScience, 50, 351-357.
- Hernández, R., & Kubota, C. (2012). Tomato seedling growth and morphologicalresponses to supplemental LED lighting Red:Blue rations under varied daily solar light integrals. Acta Horticulturae, 956, 187–194. http://doi.org/10.17660/ActaHortic.2012.956.19
- Hernandez, R., Eguchi, T., & Kubota, C. (2016). Growth and morphology of vegetable seedlings under different blue and red photon flux ratios using light-emitting diodes as solesource lighting. Acta Horticulturae (ISHS), 1134, 195–200. http://doi.org/10.17660/ActaHortic.2016.1134.26
- Heuvelink, E., Bakker, M.J., Hogendonk, L., Janse, J., Kaarsemaker, R.C., & Maaswinkel, R.H.M. (2006). Horticultural lightening in the Neetherlands: new developments, Acta Horticulturae, 711, 25-33. https://doi.org/10.17660/ActaHortic.2006.711.1
- Hoagland, D.R., & Arnon, D.I. (1938). The water culture method for growing plants without soil. California Agricultural Experiment Station Circulation, 347, 32.
- Hoffmann, A.M., Noga, G., & Hunsche, M. (2015). High blue light improves acclimation and photosynthetic recovery of pepper plants exposed to UV stress. Environmental and Experimental Botany, 109(2), 254–63. https://doi.org/10.1016/j.envexpbot.2014.06.017
- Hogewoning, S.W., Trouwborst, G., Maljaars, H., Poorter, H., van Ieperen, W., & Harbinson, J. (2010). Blue light dose–responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. Journal of Experimental Botany, 61, 3107-3117. https://doi.org/10.1093/jxb/erq132
- Hogewoning, S.W., Wienties, E., Douwatra, P., Trouwborst, G., van Irperen, W., Croce, R., & Harbinson, J. (2012). Photosynthetic quantum yeild dynamic: From photosysytems to leaves. The Plant Cell, 24, 1921-1935. https://doi.org/1105/tpc.112.097972
- Jeong, H.W., Lee, H.R., Kim, H.M., Kim, H.M., Hwang H.S., & Hwang, S.J. (2020). Using light quality for growth control of cucumber seedlings in closed-type plant production system. Plants, 639, 1-12. https://doi.org/10.3390/plants9050639
- Johkan, M., Shoji, K., Goto, F., Hashida, S., & Yoshihara, T. (2010). Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce. HortScience, 45(12), 1809–1814. https://doi.org/10.21273/HORTSCI.45.12.1809
- Kaiser, E., Ouzounis, T., Giday, H., Schipper, R., Heuvelink, E., & Marcelis, L.F.M. (2019). Adding blue to red supplemental light increases biomass and yield of greenhouse-grown tomatoes, but only to an optimum. Frontiers in Plant Science, 9, 1–11. https://doi.org/10.3389/fpls.2018.02002
- Kim, H.H., Goins, G.D., Wheeler, R.M., & Sager, J.C. (2004). Green-light supplementation for enhanced lettuce growth under red- and bluelight- emitting diodes. HortScience, 39, 1617–1622.
- Kim, H.-J., Lin, M.-Y., & Mitchell, C.A. (2019). Light spectral and thermal properties govern biomass allocation in tomato through morphological and physiological changes, Environmental and Experimental Botany, 157, 228–240. https://doi.org/10.1016/j.envexpbot.2018.10.019
- Klein, R.M. (1992). Effect of green light on biological systems. Biological Reviews, 67, 199-284. https://doi.org/10.1111/j.1469-185x.1992.tb01019.x
- Kong, Y., Kamath, D., & Zheng, Y. (2019). Blue versus red light can promote elongation growth independent of photoperiod: a study in four Brassica microgreens species. Hortscience, 54(11), 1955–1961. https://doi.org/10.21273/HORTSCI14286-19
- Kopsell, D.A., Sams, C.E., & Barickman, T.C. (2014). Sprouting broccoli accumulate higher concentrations of nutritionally important metabolites under narrow-band light-emitting diode lighting. Horticultural Science, 139, 469–477. https://doi.org/10.21273/JASHS.139.4.469
- Kreslavski, V.D., Lyubimov, V.Y., Shirshikova, G.N., Shmarev, A.N., Kosobryukhov, A.A., Schmitt, F.J., Friedrich, T., & Allakhverdiev, S.I. (2013). Preillumination of lettuce seedlings with red light enhances the resistance of photosynthetic apparatus to UV-A. Journal of Photochemistry Photobiology B: Biology, 122(1), 1–6. https://doi.org/10.1016/j.jphotobiol.2013.02.016
- Lanoue, J., Leonardos, E.D., & Grodzinski, B. (2018). Effects of light quality and intensity on diurnal patterns and rates of photo-assimilate translocation and transpiration in tomato leaves. Frontiers in Plant Science, 9, 756. https://doi.org/10.3389/fpls.2018.00756
- Li, H., Tang, C., & Xu, Z. (2013). The effects of different light qualities on rapeseed (Brassica napus ) plantlet growth and morphogenesis in vitro. Scientia Horticulturae, 150, 117–124. https://doi.org/10.1016/j.scienta.2012.10.009.
- Lichtenthaler, H.K., & Buschmann, C. (2001). Chlorophylls and carotenoids: measurement and characterization by UV-vis spectroscopy. Current Protocols in Food Analytical Chemistry F4.3.1-F4.3.8. https://doi.org/10.1002/0471142913.faf0403s01
- Liu, N., Ji, F., Xu, L.J., & He, D.X. (2019). Effects of LED light quality on the growth of pepper seedling in plant factory. International Journal of Agricultural and Biological Engineering, 12(5), 44–50. https://doi.org/25165/j.ijabe.20191205.4847
- Liu, X.Y., Chang, T.T., Guo, S.R., Xu, Z.G., & Li, J., (2011). Effects of different light qualityof LED on growth of LED on growth and photosynthetic characters in cherry tomato seedlings. Acta Horticulturae, 907, 325–330. https://doi.org/17660/ActaHortic.2011.907.53
- Lu, N., Maruo, T., Johkan, M., Hohjo, M., Tsukagoshi, S., Ito, Y., Ichimura, T., & Shinohara, Y. (2012). Effects of supplemental lighting with light-emitting diodes (LEDs) on tomato yield and quality of single-truss tomato plants grown at high planting density. Environmental Control in Biology, 50(1), 63–74. https://doi.org/10.2525/ecb.50.63
- Massa, G.D., Kim H.H., Wheeler, R.M., & Mitchell, C.A. (2008). Plant productivity in response to LED lighting. Hortscience, 43, 1951- 1956. https://doi.org/10.21273/HORTSCI.43.7.1951
- McCree, K.J. (1971). The action spectrum, absorptance and quantum yield of photosynthesis in crop plants. Agricultural Meteorology, 9, 191-216. https://doi.org/10.1016/0002-1571(71)90022-7
- Miao, Y.X., Wang, X.Z., Gao, L.H., Chen, Q.Y., & Qu, M. (2016). Blue light is more essential than red light for maintaining the activities of photosystem II and I and photosynthetic electron transport capacity in cucumber leaves. Journal of Integrative Agriculture, 15(1), 87-100. https://doi.org/10.1016/S2095-3119(15)61202-3
- Moradi, M., Abedi, B., Arouiee, H., Aliniaeifard, S., & Ghasemi Bezdi, K. (2023). Effect of different light spectral on photosynthetic performance, growth indicators and essential oil content of Salvia officinalis. Journal of Horticultural Science, 37(3), 821-841. (In Persian with English abstract). https://doi.org/10.22067/jhs.2023.78806.1211
- Morrow, R.C. (2008). LED lighting in horticulture. HortScience, 43(7), 1947-1950. https://doi.org/10.21273/HORTSCI.43.7.1947
- Naznin, M.T., Lefsrud, M., Gravel, V., & Azad, M.O.K. (2019). Blue light added with red LEDs enhance growth characteristics, pigments content, and antioxidant capacity in lettuce, spinach, kale, basil, and sweet pepper in a controlled environment. Plants, 8(4). https://doi.org/10.3390/plants8040093
- Netto, A.T., Campostrini, E., & de Oliveira J.G. (2005). Photosynthetic pigments, nitrogen, chlorophyll a fluorescence and SPAD-502 readings in coffee leaves. Scientia Horticulturae, 104, 199–209. https://doi.org/10.1016/j.scienta.2004.08.013
- Olle, , & Viršile, A. (2013). The effects of light-emitting diodes on greenhouse plant growth and quality. Agricultural and Food Science, 22, 223–234. https://doi.org/10.23986/afsci.7897
- Randall, W.C., & Lopez, R.G. (2014). Comparison of supplemental lighting from high-pressure sodium lamps and light-emitting diodes during bedding plant seedling production. HortScience, 49, 589–595. https://doi.org/10.21273/HORTSCI.49.5.589
- Savvides, A., Fanourakis, D., & van Ieperen, W. (2012). Co-ordination of hydraulic andstomatal conductances across light qualities in cucumber leaves. Journal of Experimental Botany, 63, 1135–1143. https://doi.org/10.1093/jxb/err348
- Singh, D., Basu, C., Meinhardt-Wollweber, M., & Roth, B. (2015). LEDs for energy efficient greenhouse lighting. Renew. Renewable and Sustainable Energy Reviews, 49, 139–147. https://doi.org/10.1016/j.rser.2015.04.117
- Son, K.H., & Oh, M.M. (2013). Leaf shape, growth, and antioxidant phenolic compounds of two lettuce cultivars grown under various combinations of blue and red light-emitting diodes. Horticulture Science, 48(8), 988–995. https://doi.org/10.21273/HORTSCI.48.8.988
- Song, J.X., Meng, Q.W., Du, W.F., & He, D.X. (2017). Effects of light quality on growth and development of cucumber seedlings in controlled environment. International Journal of Agricultural and Biological Engineering, 10(3), 312–318. https://doi.org/3965/j.ijabe.20171003.2299
- Spaargaren, J.J. (2001) Supplemental lightening for green house crop. Hortilux Schreder B.V. and P.L light System, Inc.-Ortario, Canada, p. 26-29.
- Tabaka, P., & Wtorkiewicz, J. (2022). Analysis of the spectral sensitivity of luxmeters and light sensors of smartphones in terms of their influence on the results of illuminance measurements-example cases. Energies, 15, https://doi.org/10.3390/en15165847
- Tamulaitis, G., Duchovskis, P., Bliznikas, Z., Breivė, K., Ulinskaite, R., Brazaityte, A., Novičkovas, A., & Žukauskas, A. (2005). High-power light wmmitting dioded based facility for plant cultivation. Journal of Physics. D: Applied Physics, 44, 261-269. https://doi.org/1088/0022-3727/38/17/S20
- Tibbitts, T., Morgan, D., & Warrington, I. (1983). Growth of lettuce, spinach, mustard, and wheat plants under four combinations of high-pressure sodium, metal halide, and tungsten halogen lamps at equal PPFD. Journal of the American Society for Horticultural Science, 108, 622–630. https://doi.org/10.21273/JASHS.108.4.622
- Trouwborst, G., Oosterkamp, J., Hogewoning, S.W., Harbinson, J., & van leperen, W., (2010). The responses of light interception, photosynthesis and fruit yield of cucumber to LED-lighting within the canopy. Physiologia Plantarum, 138, 289–300. https://doi.org/1111/j.1399-3054.2009.01333.x
- Urbonaviciute, A., Pinho, P., Samuoliene, G., Duchovskis, P., Vitta P., Stonkus, A., Tamulaitis, G., Zukauskas, A., & Halonen, L. (2007). Effect of short wavelength light lettuce growth and nutritional quality. Sodininkyste ir Darzininkyste, 26(1), 157-165.
- VanIeperen, W., Savvides, A., & Fanourakis, D. (2012). Red and blue light effects during growth on hydraulic and stomatal conductance in leaves of young cucumber plants. Acta Horticulturae, 956, 223–230. https://doi.org/17660/ActaHortic.2012.956.24
- Volkenburgh, E.V. (1999). Leaf expansion–an integrating plant behaviour. Plant Cell and Environment, 22(12), 1463–1473. https://doi.org/1046/j.1365-3040.1999.00514.x
- Wang, H., Gu, M., Cui, J., Shi, K., Zhou, Y., & Yu, J. (2009). Effects of light quality on CO2 assimilation, chlorophyll-fluorescence quenching, expression of Calvin cycle genes and carbohydrate accumulation in Cucumis sativus. Journal of Photochemistry and Photobiology B: Biology, 96(1), 30–37. https://doi.org/1016/j.jphotobiol.2009.03.010
- Watjanatepin, N. (2019). Effect of three specific spectra of LED light on the growth, yield, and fruit quality of Sida tomato. International Journal of Advanced and Applied Sciences, 6(6), 15-21. https://doi.org/10.21833/ijaas.2019.06.003
- Wei, B., Song, C.Y., Wang, S.J., Sang, S.P., Li, F.T., Wang, Z.Z., & Yang, J.Z. (2018). Nitrogen application time and R/Fr ratio: Effect on growth physiological characters and yield of maize. Chinese Agricultural Science Bulletin, 10–18. (In Chinese with English abstract)
- Yang, Q.C. (2008). Application and prospect of light emitting diode (LED) in agriculture and bio-industry. Journal of Agricultural Science and Technology, 6, 42–47. https://doi.org/3969/j.issn.1008-0864.2011.05.06
- Yang, X., Xu, H., Shao, L., Li, T., Wang, Y., & Wang, R. (2018). Response of photosynthetic capacity of tomato leaves to different LED light wavelength. Environmental and Experimental Botany, 150(3), 161–71. https://doi.org/10.1016/J.ENVEXPBOT.2018.03.013
- Yorio, N.C., Goins, G.D., Kagie, H.R., Wheeler, R.M., & Sager, J.C. (2001). Improving spinach, radish, and lettuce growth under red light-emitting diodes (LEDs) with blue light supplementation. HortScience, 36(2), 380–383. https://doi.org/10.21273/HORTSCI.36.2.380
- Zandavifard, Z., & Azizi, M. (2021). Influence of different light spectra on morphological traits and hypericin content in St. Johnʼs Wort (Hypericum perforatum). Journal Of Horticultural Science, 35(3), 331-339. (In Persian with English abstract). https://doi.org/ 10.22067/JHS.2021.57256.0
- Zheng, L., & Van Labeke, M.C. (2017) Long-term effects of red-and blue-light emitting diodes on leaf anatomy and photosynthetic efficiency of three ornamental pot plants. Frontiers in Plant Science, 8(1): 917. https://doi.org/10.3389/fpls.2017.00917
|