- Afreen, R., Tyagi, S., Singh, G.P., & Singh, M. (2021). Challenges and perspectives of polyhydroxyalkanoate production from microalgae/cyanobacteria and bacteria as microbial factories: an assessment of hybrid biological system. Frontiers in Bioengineering and Biotechnology, 9, 624885. https://doi.org/10.3389/fbioe.2021.624885
- Allouzi, M.M.A., Allouzi, S., Al-Salaheen, B., Khoo, K.S., Rajendran, S., Sankaran, R., & Show, P.L. (2022). Current advances and future trend of nanotechnology as microalgae-based biosensor. Biochemical Engineering Journal, 187, 108653. https://doi.org/10.1016/j.ecoenv.2012.01.002
- Altamirano, M., Garcıa-Villada, L., Agrelo, M., Sánchez-Martın, L., Martın-Otero, L., Flores-Moya, A., & Costas, E. (2004). A novel approach to improve specificity of algal biosensors using wild-type and resistant mutants: an application to detect TNT. Biosensors and bioelectronics, 19(10), 1319-1323. https://doi.org/10.1016/j.toxicon.2013.10.003
- Antonacci, A., & Scognamiglio, V. (2020). Biotechnological advances in the design of algae-based biosensors. Trends in Biotechnology, 38(3), 334-347. https://doi.org/3329/bjb.v42i2.18033
- Aydınoğlu, D. (2020). Active food packaging technology as an application in the food industry. Academic Studies in Engineering Sciences, 215. https://doi.org/21123/bsj.15.1.16-21
- Azman, N.H., Khairul, W.M., & Sarbon, N.M. (2022). A comprehensive review on biocompatible film sensor containing natural extract: Active/intelligent food packaging. Food Control, 141, 109189. https://doi.org/10.1016/j.foodcont.2022.109189
- Bao, Z., Weatherspoon, M. R., Shian, S., Cai, Y., Graham, P.D., Allan, S.M., & Kang, Z. (2007). Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas. Nature, 446(7132), 172-175. https://doi.org/10.1016/j.toxicon.2011.02.015
- Brayner, R., Couté, A., Livage, J., Perrette, C., & Sicard, C. (2011a). Micro-algal biosensors. Analytical and Bioanalytical Chemistry, 401, 581-597. https://doi.org/10.1016/j.aquatox.2015.11.002
- Brayner, R., Couté, A., Livage, J., Perrette, C., & Sicard, C. (2011b). Micro-algal biosensors. Analytical and Bioanalytical Chemistry, 401(2), 581-597. https://doi.org/10.1007/s00216-011-5107-z
- Carrilho, E.N.V., Nóbrega, J.A., & Gilbert, T.R. (2003). The use of silica-immobilized brown alga (Pilayella littoralis) for metal preconcentration and determination by inductively coupled plasma optical emission spectrometry. Talanta, 60(6), 1131-1140. https://doi.org/10.1016/j.toxicon.2007.09.001
- Chen, J., Ren, Y., Seow, J., Liu, T., Bang, W., & Yuk, H. (2012). Intervention technologies for ensuring microbiological safety of meat: current and future trends. Comprehensive Reviews in Food Science and Food Safety, 11(2), 119-132. https://doi.org/10.1016/j.algal.2014.12.009
- Chouteau, C., Dzyadevych, S., Chovelon, J.-M., & Durrieu, C. (2004). Development of novel conductometric biosensors based on immobilised whole cell Chlorella vulgaris Biosensors and Bioelectronics, 19(9), 1089-1096. https://doi.org/10.3390/md9112164
- Coste, M., Boutry, S., Tison-Rosebery, J., & Delmas, F. (2009). Improvements of the Biological Diatom Index (BDI): Description and efficiency of the new version (BDI-2006). Ecological Indicators, 9(4), 621-650. https://doi.org/10.1126/science.1099128
- De, P., & Mazumder, N. (2022a). Diatoms as sensors and their applications. In Diatom Microscopy (pp. 251-281). https://doi.org/10.1016/j.scitotenv.2019.03.104
- De, P., & Mazumder, N. (2022b). Diatoms as sensors and their applications. Diatom Microscopy, 251-281. https://doi.org/10.1016/j.hal.2015.10.015
- De Stefano, L., Rendina, I., De Stefano, M., Bismuto, A., & Maddalena, P. (2005a). Marine diatoms as optical chemical sensors. Applied Physics Letters, 87(23). https://doi.org/10.1111/pbi.12638
- De Stefano, L., Rendina, I., De Stefano, M., Bismuto, A., & Maddalena, P. (2005b). Marine diatoms as optical chemical sensors. Applied Physics Letters, 87(23), 233902. https://doi.org/10.3389/fmicb.2016.01693
- Durrieu, C., Badreddine, I., & Daix, C. (2003). A dialysis system with phytoplankton for monitoring chemical pollution in freshwater ecosystems by alkaline phosphatase assay. Journal of Applied Phycology, 15, 289-295. https://doi.org/10.1021/np500106w
- Durrieu, C., & Tran-Minh, C. (2002). Optical algal biosensor using alkaline phosphatase for determination of heavy metals. Ecotoxicology and Environmental Safety, 51(3), 206-209. https://doi.org/10.1016/j.hal.2010.12.002
- Ejeian, F., Etedali, P., Mansouri-Tehrani, H.-A., Soozanipour, A., Low, Z.-X., Asadnia, M., & Razmjou, A. (2018). Biosensors for wastewater monitoring: A review. Biosensors and Bioelectronics, 118, 66-79. https://doi.org/10.1016/j.bios.2018.07.019
- Giardi, M.T., & Pace, E. (2005). Photosynthetic proteins for technological applications. TRENDS in Biotechnology, 23(5), 257-263. https://doi.org/10.1016/j.febslet.2012.07.026
- Giere, O. (2008). Meiobenthology: the microscopic motile fauna of aquatic sediments: Springer Science & Business Media. https://doi.org/10.3390/toxins11110624
- Guedri, H., & Durrieu, C. (2008). A self-assembled monolayers based conductometric algal whole cell biosensor for water monitoring. Microchimica Acta, 163, 179-184. https://doi.org/10.1186/s40529-017-0211-9
- Halonen, N., Pálvölgyi, P.S., Bassani, A., Fiorentini, C., Nair, R., Spigno, G., & Kordas, K. (2020). Bio-based smart materials for food packaging and sensors – A Review. Frontiers in Materials, 7. https://doi.org/10.3389/fmats.2020.00082
- Hemavathi, A., & Siddaramaiah, H. (2018). Food packaging: polimers as packaging materials in food supply chains. Encyclopedia of polymer applications. CRC Press Boca Raton, 1374-1397. https://doi.org/10.1080/03650340.2010.499902
- Ladero, V., Calles-Enríquez, M., Fernández, M., & A Alvarez, M. (2010). Toxicological effects of dietary biogenic amines. Current Nutrition & Food Science, 6(2), 145-156. https://doi.org/10.3390/md11103689
- Lin, K.-C., Kunduru, V., Bothara, M., Rege, K., Prasad, S., & Ramakrishna, B. (2010). Biogenic nanoporous silica-based sensor for enhanced electrochemical detection of cardiovascular biomarkers proteins. Biosensors and Bioelectronics, 25(10), 2336-2342. https://doi.org/10.1007/s11104-008-9734-x
- Liu, Q., & Wang, P. (2009). Cell-based biosensors: principles and applications: Artech House. https://doi.org/10.1016/j.jplph.2010.09.013
- Mallick, N. (2002). Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review. Biometals, 15, 377-390. https://doi.org/10.1007/s11356-013-1535-y
- Mazumder, N., & Gordon, R. (2022). Diatom Microscopy: John Wiley & Sons. https://doi.org/10.3109/10408410902823705
- Monique, E. (2015). Volatile amines as criteria for chemical quality assessment. In. https://doi.org/10.1007/s11356-016-6223-2
- Moreno-Garrido, I. (2008). Microalgae immobilization: current techniques and uses. Bioresource Technology, 99(10), 3949-3964. https://doi.org/10.1016/S0041-0101(98)00114-7
- Nassif, N., & Livage, J. (2011). From diatoms to silica-based biohybrids. Chemical Society Reviews, 40(2), 849-859. https://doi.org/10.1006/abio.1995.1106
- Okuma, H., Okazaki, W., Usami, R., & Horikoshi, K. (2000). Development of the enzyme reactor system with an amperometric detection and application to estimation of the incipient stage of spoilage of chicken. Analytica Chimica Acta, 411(1-2), 37-43. https://doi.org/10.1016/j.foodchem.2012.01.107
- Park, Y.W., Kim, S.M., Lee, J.Y., & Jang, W. (2015). Application of biosensors in smart packaging. Molecular & Cellular Toxicology, 11, 277-285. https://doi.org/10.1007/BF01874863
- Pavelková, A. (2013). Time temperature indicators as devices intelligent packaging. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 61(1), 245-251. https://doi.org/10.1016/j.ejsobi.2006.11.001
- Peña-Vázquez, E., Pérez-Conde, C., Costas, E., & Moreno-Bondi, M. (2010). Development of a microalgal PAM test method for Cu (II) in waters: comparison of using spectrofluorometry. Ecotoxicology, 19, 1059-1065. https://doi.org/10.4489/MYCO.2006.34.3.138
- Pospíšil, P. (2009). Production of reactive oxygen species by photosystem II. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1787(10), 1151-1160. https://doi.org/10.1016/j.bbabio.2009.05.005
- Poyatos-Racionero, E., Ros-Lis, J.V., Vivancos, J.-L., & Martínez-Máñez, R. (2018). Recent advances on intelligent packaging as tools to reduce food waste. Journal of Cleaner Production, 172, 3398-3409. https://doi.org/10.1016/j.jclepro.2017.11.075
- Punakivi, K., Smolander, M., Niku-Paavola, M.-L., Mattinen, J., & Buchert, J. (2006). Enzymatic determination of biogenic amines with transglutaminase. Talanta, 68(3), 1040-1045. https://doi.org/4489/MYCO.2008.36.4.242
- Purohit, B., Vernekar, P. R., Shetti, N. P., & Chandra, P. (2020). Biosensor nanoengineering: Design, operation, and implementation for biomolecular analysis. Sensors International, 1, 100040. https://doi.org/10.1016/j.algal.2016.04.004
- Rahman, M.A., Soumya, K., Tripathi, A., Sundaram, S., Singh, S., & Gupta, A. (2011). Evaluation and sensitivity of cyanobacteria, Nostoc muscorum and Synechococcus PCC 7942 for heavy metals stress–a step toward biosensor. Toxicological & Environmental Chemistry, 93(10), 1982-1990. https://doi.org/10.1016/j.scitotenv.2014.04.037
- Rathnayake, I., Munagamage, T., Pathirathne, A., & Megharaj, M. (2021). Whole cell microalgal-cyanobacterial array biosensor for monitoring Cd, Cr and Zn in aquatic systems. Water Science and Technology, 84(7), 1579-1593. https://doi.org/10.1139/W08-034.
- Reynolds, C.S. (2006). The ecology of phytoplankton: Cambridge University Press. https://doi.org/30493/DAS.2020.246624
- Roberta, B., Alain, C., Jacques, L., Catherine, P., & Clemence, S. (2011). Micro-algal biosensors. Analytical and Bioanalytical Chemistry, 401(2), 581-598. https://doi.org/30493/DAS.2020.246624.
- Rodriguez Jr, M., Sanders, C. A., & Greenbaum, E. (2002). Biosensors for rapid monitoring of primary-source drinking water using naturally occurring photosynthesis. Biosensors and Bioelectronics, 17(10), 843-849. https://doi.org/10.1111/jpy.120
- Sandhage, K. H., Allan, S. M., Dickerson, M. B., Gaddis, C. S., Shian, S., Weatherspoon, M. R., & Snyder, R. L. (2005). Merging biological self‐assembly with synthetic chemical tailoring: The Potential for 3‐D Genetically Engineered Micro/Nano‐Devices (3‐D GEMS). International Journal of Applied Ceramic Technology, 2(4), 317-326. https://doi.org/10.1007/s10295-010-0833-3
- Saraswati, P.K., & Srinivasan, M. (2015). Micropaleontology: Principles and applications: Springer. https://doi.org/3923/ajps.2003.944.951
- Shao, C., Howe, C., Porter, A.J.R., & Glover, L. (2002). Novel cyanobacterial biosensor for detection of herbicides. Applied and Environmental Microbiology, 68(10), 5026-5033. https://doi.org/10.1007/s10265-006-0057-9
- Shitanda, I., Takada, K., Sakai, Y., & Tatsuma, T. (2005). Compact amperometric algal biosensors for the evaluation of water toxicity. Analytica Chimica Acta, 530(2), 191-197. https://doi.org/10.1016/j.aquatox.2013.04.007
- Sobhan, A., Muthukumarappan, K., & Wei, L. (2021). Biosensors and biopolymer-based nanocomposites for smart food packaging: Challenges and opportunities. Food Packaging and Shelf Life, 30, 100745. https://doi.org/10.1016/j.fpsl.2021.100745
- Tajes-Martinez, P., Beceiro-Gonzalez, E., Muniategui-Lorenzo, S., & Prada-Rodriguez, D. (2006). Micro-columns packed with Chlorella vulgaris immobilised on silica gel for mercury speciation. Talanta, 68(5), 1489-1496. https://doi.org/10.1016/j.jgeb.2013.04.001.
- Védrine, C., Leclerc, J.-C., Durrieu, C., & Tran-Minh, C. (2003). Optical whole-cell biosensor using Chlorella vulgaris designed for monitoring herbicides. Biosensors and Bioelectronics, 18(4), 457-463. https://doi.org/10.1093/oxfordjournals.aob.a084742.
- Verma, N., Kaur, H., & Kumar, S. (2011). Whole cell based electrochemical biosensor for monitoring lead ions in milk. Biotechnology, 10(3), 259-266. https://doi.org/10.3390/app11020871
- Wadhera, T., Kakkar, D., Wadhwa, G., & Raj, B. (2019). Recent advances and progress in development of the field effect transistor biosensor: A review. Journal of Electronic Materials, 48, 7635-7646. https://doi.org/10.1007/s11099-017-0716-1
- Yam, K.L., Takhistov, P.T., & Miltz, J. (2005). Intelligent packaging: concepts and applications. Journal of Food Science, 70(1), R1-R10. https://doi.org/1007/s11274-019-2653-6
- Zamaleeva, A.I., Sharipova, I.R., Shamagsumova, R.V., Ivanov, A.N., Evtugyn, G.A., Ishmuchametova, D.G., & Fakhrullin, R.F. (2011). A whole-cell amperometric herbicide biosensor based on magnetically functionalised microalgae and screen-printed electrodes. Analytical Methods, 3(3), 509-513. https://doi.org/10.1016/j.fob.2011.10.004
|