- Aauge, R.M. (2001). Water relation, drought and vesicular arbuscular mycorrhizal symbiosis. Mycorrhiza, 11, 3-42.
- Abdel Latef, A.A.H., & Chaoxing, H. (2011). Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Scientia Horticulturae, 127(3), 228–233.
- Ashok, A., Nisha, K., Karishma, N., Anju, T., & Gupta, K. (2012). Arbuscular mycorrhizal symbiosis and alleviation of salinity stress. Journal of Applied and Natural Science, 4(1), 144-155.
- Banuelos, J., Alarcón, A., Larsen, J., Cruz-Sánchez, S., & Trejo, D. (2014). Interactions between arbuscular mycorrhizal fungi and Meloidogyne incognitain the ornamental plant Impatiens balsamina. Journal of Soil Science and Plant Nutrition, 44(4), 63-74.
- Bolandnazar, S. (2019). Use of microorganisms and biofertilizers in healthy vegetable production. 11th Iranian Horticultural Science congress, Urmia University. (In Persian with English abstract)
- Cheng, X., & Baumgartner, K. (2006). Effects of mycorrhizal root and extra radical hyphen on N15 uptake from vineyard cover crop litter and the soil microbial community. Journal of Soil Biology and Biochemistry, 38, 2665-2675.
- Colla, G., Rouphael, Y., Jawad, R., Kumar, P., Rea, E., & Cardarelli, M. (2013). The effectiveness of grafting to improve NaCl and CaCl2 tolerance in cucumber. Scientia Horticulturae, 164, 380-391.
- Colla, G., Rouphael, Y., Cardarelli, M., Salerno, A., & Rea, E. (2010). The effectiveness of grafting to improve alkalinity tolerance in watermelon. Environmental and Experimental Botany, 68, 283-291.
- Colla, G., Rouphael, Y., Rea, E., & Cardarelli, M. (2012). Grafting cucumber plants enhance tolerance to sodium chloride and sulfate salinization. Scientia Horticulturae, 135, 177-185.
- Coline, B., Mireille, C., David, G., Guillaume, B., & Soizic, R. (2013). High phosphate reduces host ability to develop arbuscular mycorrhizal symbiosis without affecting root calcium spiking responses to the fungus. Journal Frontiers in Plant Science, 426(4), 1-15.
- Cela, F., Avio, L., Giordani, T., Vangelisti, A., Cavallini, A., Turrini, A., Sbrana, C., Pardossi, A., & Incrocci, L. (2022). Arbuscular mycorrhizal fungi increase nutritional quality of soilless grown lettuce while overcoming low phosphorus supply. Foods, 11, 3612. https://doi.org/10.3390/foods11223612
- Davis, A.R., Perkins-Veazie, P., Sakata, Y., López-Galarza, S., Maroto, J.V., Lee, S.G., Huh, Y.C., Sun, Z., Miguel, A., King, S.R., & Cohen, R. (2008). Cucurbit grafting. Critical Reviews in Plant Sciences, 27, 50-74.
- Demir‚ S. (2004). Influence of arbuscular mycorrhiza on some physiological growth parameters of pepper. Turkish Journal of Biology, 28, 85-90.
- Dudhane, M.P., Borde, M.Y., & Jite, P.K. (2011). Effect of arbuscular mycorrhizal fungi on growth and antioxidant activity in Gmelina arborea under salt stress condition. Notulae Scientia Biologicae, 3(4), 71-78.
- Edelstein, M., Burger, Y., Horev, C., Porat, A., Meir, A., & Cohen, R. (2004). Assessing the effect of genetic and anatomic variation of Cucurbita rootstocks on vigour, survival and yield of grafted melons. The Journal of Horticultural Science and Biotechnology, 79, 370-374.
- Jan, J., Petra, B., & Milan, G. (2013). Mycorrhizal hyphae as ecological niche for highly specialized hypersymbionts or just soil free-riders. Journal Frontiers in Plant Science, 134(4), 1-8.
- George, E., & Lee, Y.J. (2005). Contribution of mycorrhizal hyphae to the uptake of metal cations by cucumber plants at two levels of phosphorus supply. Journal of Plant and Soil, 287, 361-370.
- Giri, B., & Mukerji, K.G. (2004). Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza, 14, 307–312.
- Hart, M., Ehret, D.L., Krumbein, A., Leung, C., Murch, S., Turi, C.E., & Franken, P. (2015). Inoculation with arbuscular mycorrhizal fungi improves the nutritional value of tomatoes. Mycorrhiza, 25, 359–376.
- Hoyos Echebarría, P. (2000). March. Influence of different rootstocks on the yield and quality of greenhouses grown cucumbers. In V International Symposium on Protected Cultivation in Mild Winter Climates: Current Trends for Sustainable Technologies, 559, 139-144.
- Huang, Y., Bie, Z.L., He, S.P., Hua, B., Zhen, A., & Liu, Z.X. (2010). Improving cucumber tolerance to major nutrients induced salinity by grafting onto Cucurbita ficifolia. Environmental and Experimental Botany, 69, 32-38.
- Huang, Y., Li, J., Hua, B., Liu, Z., Fan, M., & Bie, Z. (2013). Grafting onto different rootstocks as a means to improve watermelon tolerance to low potassium stress. Scientia Horticulturae, 149, 80-85.
- Huang, Z., Zou, Z., He, C., He, Z., Zhang, Z., & Li, J. (2011). Physiological and photosynthetic responses of melon (Cucumis melo ) seedlings to three Glomus species under water deficit. Plant and Soil, 339(1), 391-399.
- Kappel, N., Balazes, G., Fekete, D., & Bohm, V. (2013). Use of different potassium and magnesium treatments in watermelon production by fertigation. International Potash Institute, Research Findings, No. 36.
- Keymer, A., Pimprikar, P., Wewer, V., Huber, C., Brands, M., Bucerius, S.L., Delaux, P.M., Klingl, V., Ropenack, E., & Wang, T.L. (2017). Lipid transfer from plants to arbuscular mycorrhiza fungi. eLife, 29107(6), 1-33. https://doi.org/10.7554/eLife.29107
- Khalvati, M.A., Mzafar, A., & Schmidhalter, U. (2005). Quantification of water uptake by arbuscular-mycorrhizal hypha and its signification for leaf growth, water relations and gas exchange of barley subjected to drought stress. Plant Biology Stuttgart, 7(6), 706-712.
- Khan, A.G. (2005). Mycorrhizas and phytoremediation. In: Willey, N. (ed.), Method in Biotechnology-Phytoremediation: Methods and Reviews. Totowa, USA: Humana Press.
- Lee J.M., & Oda, M. (2003). Grafting of herbaceous vegetable and ornamental crops. Horticultural Reviews, 28, 61-124.
- Lichtenthaler, H.K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In Methods in enzymology. Academic Press, 148, 350-382.
- Manoharan, P.T., Pandi, M., Shanmugaiah, V., Gomathinayagam, S., & Balasubramanian, N. (2008). Effect of vesicular arbuscular mycorrhizal fungus on the physiological and biochemical changes of five different tree seedlings grown under nursery conditions. African Journal of Biotechology, 7, 3431–3436.
- Magwaza, S.T., Magwaza, L.S., Odindo, A.O., & Mditshwa, A. (2020). Hydroponic technology as decentralised system for Do- mestic wastewater treatment and vegetable production in urban agriculture: A Review. Science Total Environment, 134154(698), 89-123.
- Marzizadeh, A., Bolandnazar, S., & Hajilou, J. (2020). The effect of two commercial rootstocks pumpkin and two mycorrhizal fungi species colonization on growth and yield of greenhouse cucumber. Journal of Agricultural Science and Sustainable Production, 30(2), 129-143. (In Persian with English abstract)
- Miranda, H., David, E., Angelika, K., Connie, L., Susan, M., Christina, T., & Philipp, F. (2014). Inoculation with arbuscular mycorrhizal fungi improves the nutritional value of tomatoes. Mycorrhiza, Springer-Verlag Berlin Heidelberg, 1007(10), 1-18.
- Raiesi, F., & Ghollarata, M. (2006). Interactions between phosphorus availability and an AM fungus (Glomus intraradices) and their effects on soil microbial respiration, biomass and enzyme activities in a calcareous soil. Pedobiologia, 50, 413–425.
- Salam, M.A., Masum, A.S.M.H., Chowdhury, S.S., Dhar, M., Saddeque, M.A., & Islam, M.R. (2002). Growth and yield of watermelon as influenced by grafting. Journal of Biotechology Sciencess, 2, 298-299.
- Sanchez-Blanco, M.J., Ferrandez, T., Morales, M.A., Morte, A., & Alarcon, J.J. (2004). Variations in water status, gas exchange, and growth in Rosmarinus officinalis plants infected with Glomus deserticola under drought conditions. Journal of Plant Physiology, 161(6), 675-682.
- Sambo, P., Nicoletto, C., Giro, A., Pii, Y., Valentinuzzi, F., Mimmo, T., Lugli, P., Orzes, G., Mazzetto, F., & Astolfi, S. (2019). Hydroponic solutions for soilless production systems: Issues and opportunities in a smart agriculture perspective. Plant Science, 923(10), 1-17.
- Savvas, D., Papastavrou, D., Ntatsi, G., Ropokis, A., Hartmann, H., & Schwarz, D. (2009). Interactive effects of grafting and Mn supply level on growth, yield and nutrient uptake by tomato. Scientia Horticulturae, 44, 1978-1982.
- Salehi, H., Javadi, T., & Ghaderi, N. (2021). The effect of mycorrhizal on quality characteristics of strawberries in defferent growing medium under soilless culture. 12th Iranian Horticultural Science congress. 12: 114-119.
- Slinkard, K., & Singleton, VL. (1977). Total phenol analysis; automation and comparison with manual methods. American Journal of Enology and Viticulture, 28, 49-55.
- Seong, K.C., Moon, J.H., Lee, S.G., Kang, Y.G., Kim, K.Y., & Seo, H.D. (2003). Growth, lateral shoot development, and fruit yield of white-spined cucumber (Cucumis sativus Baekseong-3) as affected by grafting methods. Journal of the Korean Soceity for Horticultural Science, 44, 478-482.
- Smith, S.E., & Read, D.J. (2008). Mineral nutrition, toxic element accumulation and water relations of arbuscular mycorrhizal plants. Mycorrhizal Symbiosis, 3, 145-18.
- Suarez-Caceres, G.P., Perez-Urrestarazu, L., Aviles, M., Borrero, C., Eguibar, J.R.L., & Fernandez-Cabanas, V.M. (2021). Susceptibility to water-borne plant diseases of hydroponic vs. aquaponics systems. Aquaculture, 737093(544), 10-8. https://doi.org/1016/j.aquaculture.2021.737093
- Talaat, N.B., & Shawky, B.T. (2011). Infl uence of arbuscular mycorrhizae on yield, nutrients, organic solutes, and antioxidant enzymes of two wheat cultivarsunder salt stress. Journal of Plant Nutrition and Soil Science, 174(2), 283−291. https://doi.org/1002/jpln.201000051
- Tafazolei, E. (2009).Cultivation of greenhouse fruits (hydroponics). First National Congress of Hydroponics and Greenhouse Products, Isfahan University of Technology. (In Persian)
- Ortas, I. (2010). Effect of mycorrhiza application on plant growth and nutrient uptake in cucumber production under field conditions. Spanish Journal of Agricultural Research, 8, 116-122.
- Turhan, A., Ozmen, N., Kuscu, H., Serbeci, M.S., & Seniz, V. (2012). Influence of rootstocks on yield and fruit characteristics and quality of watermelon. Horticulture, Environment and Biotechnology, 53(4), 336-341.
- Ismet, B., Glenda, S., & Astrit, B. (2014). The effects of endogenous mycorrhiza (Glomus ) on plant growth and yield of grafted cucumber (Cucumis sativum L.) under common commercial greenhouse conditions. Albanian Journal Agriculture Sciences, 13(2), 24-28.
- Yetisir, H., Kurt, S., & Tok, F.M. (2007). Root stock potential of Turkish Lagenaria siceraria germplasm for watermelon: plant growth, graft compatibility, and resistance to Fusarium. Turkish Journal of Agriculture and Forestry, 31, 381-388.
- Yetisir, H., Sari, N., & Yucel, S. (2003). Rootstock resistance to Fusarium wilt and effect on watermelon fruit yield and quality. Phytoparasitica, 31, 163-169.
- Yu, L., Haley, S., Perret, J., Harris, M., Wison, J., & Qian, M. (2002). Free radical scavenging properties of wheat extracts. Agriculture Food Chemistry, 50, 1619–1624.
- Zhang, Z.X., Li, A. Q., Xu, Y.L., & Xu, Y.J. (2006). Analysis of plant protecting isozymes and their affinity of grafted watermelon seedlings. Chinese Journal Tropical Crops, 27, 12-16.
- Zhao, F.G., Chen, L.P., He, X.L., & Pan, J. (2004). Effects of AM fungi on the quality of tobacco leaf at different phosphorus levels. Soils and Fertilizers (Beijing), 3, 43-45.
- Zhou, Y., Zhou, J., Huang, L., Ding, X., Shi, K., & Yu, J. (2009). Grafting of Cucumis sativus onto Cucurbita ficifolia leads to improved plant growth, increased light utilization and reduced accumulation of reactive oxygen species in chilled plants. Journal of Plant Research, 122(5), 529-540.
- Zoltan, F., Roxana, V., Vlad, S., Ioana, A.R., Adriana, F.S., Teodor, R., & Radu, E.S. (2022). Arbuscular mycorrhizal fungi and fertilization influence yield growth and root colonization of different tomato genotype. MDPI Journal Plants, 1743(11), 1-24. https://doi.org/10.3390/plants11131743
|