- Akbarian Meymand, M.J., Faraji Kafshgari, S., Mahmodi, E., & Vatankhah, M. (2015). The effect of using microwave pretreatment in drying roots nutmeg on antimicrobial properties against pathogenic bacteria and spoilage molds. Iranian Journal of Medical Microbiology, 9(2), 47-55.
- Amin Ekhlas, S., Pajohi-Alamoti, M.R., & Salehi, F. (2023). Effect of ultrasonic waves and drying method on the moisture loss kinetics and rehydration of sprouted wheat. Journal of Food Science and Technology (Iran), 20(135), 159-168. https://doi.org/10.22034/fsct.19.135.159
- Azadbakht, M., Vahedi Torshizi, M., Mahmoodi, M.J., & Ghazagh Jahed, R. (2021). Mathematical modeling of the biochemical properties of carrots by microwave drying with different pretreatments using response surface methodology. Food Engineering Research, 21(72), 35-56. https://doi.org/10.22092/fooder.2020.343389.1273
- Delgado, J.M.P.Q., & da Silva, M.V. (2014). Food Dehydration: Fundamentals, Modelling and Applications, in: Delgado, J.M.P.Q., Barbosa de Lima, A.G. (Eds.), Transport phenomena and drying of solids and particulate materials. Springer International Publishing, Cham, pp. 69-94.
- Doymaz, İ. (2007). Influence of pretreatment solution on the drying of sour cherry. Journal of Food Engineering, 78(2), 591-596. https://doi.org/10.1016/j.jfoodeng.2005.10.037
- Einafshar, S. (2014). Quality and microbial changes of four dried sour cherry by osmosis process through one year storage. Iranian Food Science and Technology Research Journal, 10(4), 363-374. https://doi.org/10.22067/ifstrj.v10i4.43732.
- Ghaderi, A., Abbasi, S., Motevali, A., & Minaei, S. (2011). Selection of a mathematical model for drying kinetics of sour cherry (Prunus cerasus) in a microwave-vacuum dryer. Iranian Journal of Nutrition Sciences and Food Technology, 6(2), 55-64.
- Kouchakzadeh, A., & Shafeei, S. (2010). Modeling of microwave-convective drying of pistachios. Energy Conversion and Management, 51(10), 2012-2015. https://doi.org/10.1016/j.enconman.2010.02.034
- Maskan, M. (2000). Microwave/air and microwave finish drying of banana. Journal of Food Engineering, 44(2), 71-78. https://doi.org/10.1016/S0260-8774(99)00167-3
- Mohammadpour Mir, M.E., Nanvakenari, S., & Movagharnejad, K. (2020). Modeling and investigation of the performance of MLP and RBF during the paddy rice drying in microwave dryer. Iranian Food Science and Technology Research Journal, 16(2), 331-341. https://doi.org/10.22067/ifstrj.v16i2.80737
- Momenzadeh, L., Zomorodian, A.A., & Mowla, D. (2010). Applying artificial neural network for shrinkage prediction of green pea in a microwave assisted fluidized bed dryer. Iranian Food Science and Technology Research Journal, 6(4), 277-285. https://doi.org/10.22067/ifstrj.v6i4.9285
- Pourhaji, F., Tabatabaei Yazdi, F., Mortazavi, S.A., Mohebbi, M., & Mazaheri Tehrani, M. (2018). Foam mat drying of banana milk using microwave and evaluation of resulting powders’s properties. Iranian Food Science and Technology Research Journal, 14(2), 283-296. https://doi.org/10.22067/ifstrj.v0i0.60551
- Sahin, M., & Doymaz, İ. (2017). Estimation of cauliflower mass transfer parameters during convective drying. Heat and Mass Transfer, 53(2), 507-517. https://doi.org/10.1007/s00231-016-1835-0
- Salehi, F. (2020). Food industry machines and equipment. Bu-Ali Sina University Press, Hamedan, Iran.
- Salehi, F., Cheraghi, R., & Rasouli, M. (2022). Mass transfer kinetics (soluble solids gain and water loss) of ultrasound-assisted osmotic dehydration of apple slices. Scientific Reports, 12(1), 15392. https://doi.org/10.1038/s41598-022-19826-w
- Salehi, F., Razavi Kamran, H., & Goharpour, K. (2023). Effects of ultrasound time, xanthan gum, and sucrose levels on the osmosis dehydration and appearance characteristics of grapefruit slices: process optimization using response surface methodology. Ultrasonics Sonochemistry, 98, 106505. https://doi.org/10.1016/j.ultsonch.2023.106505
- Salehi, F., & Satorabi, M. (2021a). Effect of basil seed and xanthan gums coating on colour and surface change kinetics of peach slices during infrared drying. Acta Technologica Agriculturae, 24(3), 150-156. https://doi.org/10.2478/ata-2021-0025
- Salehi, F., & Satorabi, M. (2021b). Influence of infrared drying on drying kinetics of apple slices coated with basil seed and xanthan gums. International Journal of Fruit Science, 21(1), 519-527. https://doi.org/10.1080/15538362.2021.1908202
- Sharma, G.P., & Prasad, S. (2006). Optimization of process parameters for microwave drying of garlic cloves. Journal of Food Engineering, 75(4), 441-446. https://doi.org/10.1016/j.jfoodeng.2005.04.029
- Šumić, Z., Tepić, A., Vidović, S., Jokić, S., & Malbaša, R. (2013). Optimization of frozen sour cherries vacuum drying process. Food Chemistry, 136(1), 55-63. https://doi.org/10.1016/j.foodchem.2012.07.102
- Vega-Gálvez, A., Di Scala, K., Rodríguez, K., Lemus-Mondaca, R., Miranda, M., López, J., & Perez-Won, M. (2009). Effect of air-drying temperature on physico-chemical properties, antioxidant capacity, colour and total phenolic content of red pepper (Capsicum annuum, L. var. Hungarian). Food Chemistry, 117(4), 647-653. https://doi.org/10.1016/j.foodchem.2009.04.066
- Wojdyło, A., Figiel, A., Lech, K., Nowicka, P., & Oszmiański, J. (2014). Effect of convective and vacuum–microwave drying on the bioactive compounds, color, and antioxidant capacity of sour cherries. Food and Bioprocess Technology, 7(3), 829-841. https://doi.org/10.1007/s11947-013-1130-8
- Wray, D., & Ramaswamy, H.S. (2015). Novel concepts in microwave drying of foods. Drying Technology, 33(7), 769-783. https://doi.org/10.1080/07373937.2014.985793
|