- AghaKouchak, A., Farahmand, A., Melton, F.S., Teixeira, J., Anderson, M.C., Wardlow, B.D., & Hain, C. R. (2015). Remote sensing of drought: Progress, challenges and opportunities. Reviews of Geophysics, 53(2), 452-480. https://doi.org/10.1002/2014RG000456
- Arslan, N., & Sekertekin, A. (2019). Application of long short-term memory neural network model for the reconstruction of MODIS Land Surface Temperature images. Journal of Atmospheric and Solar-Terrestrial Physics, 194, 105100. https://doi.org/10.1016/j.jastp.2019.105100
- Babajafari, H., Paimazd, Sh., Moghadasi, M., & Hosseinivardanjani, M. (2022). Assessment monitoring spatio-temporal of drought lake Urmia basin using ETDI remote sensing index and SPI ground index. Journal of Water and Soil Science, 26(3), 281-302
- Balti, H., Abbes, A.B., Mellouli, N., Farah, I.R., Sang, Y., & Lamolle, M. (2020). A review of drought monitoring with big data: Issues, methods, challenges and research directions. Ecological Informatics, 60, 101136. https://doi.org/10.1016/j.ecoinf.2020.101136
- Boser, B.E., Guyon, I.M., & Vapnik, V.N. (1992). A training algorithm for optimal margin classifiers. Proceedings of the fifth annual workshop on Computational learning theory, https://doi.org/10.1145/130385.130401
- Breiman, L., Friedman, J., Stone, C.J., & Olshen, R.A. (1984). Classification and regression trees. CRC press.
- Crisóstomo de Castro Filho, H., Abílio de Carvalho Júnior, O., Ferreira de Carvalho, O.L., Pozzobon de Bem, P., dos Santos de Moura, R., Olino de Albuquerque, , Rosa Silva, C., Guimarães Ferreira, P.H., Fontes Guimarães, R., & Trancoso Gomes, R.A. (2020). Rice crop detection using LSTM, Bi-LSTM, and machine learning models from Sentinel-1 time series. Remote Sensing, 12(16), 2655. https://doi.org/10.3390/rs12162655
- Cunha, R.L., Silva, B., & Netto, M.A. (2018). A scalable machine learning system for pre-season agriculture yield forecast. 2018 IEEE 14th International Conference on e-Science (e-Science), https://doi.org/1109/eScience.2018.00131
- Dang, C., Liu, Y., Yue, H., Qian, J., & Zhu, R. (2020). Autumn crop yield prediction using data-driven approaches:-support vector machines, random forest, and deep neural network methods. Canadian Journal of Remote Sensing, 1-20. https://doi.org/10.1080/07038992.2020.1833186
- Elbeltagi, A., Kumari, N., Dharpure, J.K., Mokhtar, A., Alsafadi, K., Kumar, M., Mehdinejadiani, B., Ramezani Etedali, H., Brouziyne, Y., & Towfiqul Islam, A.R.M. (2021). Prediction of combined terrestrial evapotranspiration index (CTEI) over large river basin based on machine learning approaches. Water, 13(4), 547. https://doi.org/10.3390/w13040547
- Fan, Y., Qian, Y., Xie, F.-L., & Soong, F.K. (2014). TTS synthesis with bidirectional LSTM based recurrent neural networks. Fifteenth annual conference of the international speech communication association.
- Guzmán, S.M., Paz, J.O., Tagert, M.L.M., Mercer, A.E., & Pote, J.W. (2018). An integrated SVR and crop model to estimate the impacts of irrigation on daily groundwater levels. Agricultural Systems, 159, 248-259. https://doi.org/10.1016/j.agsy.2017.01.017
- Heim Jr, R.R., & Brewer, M.J. (2012). The global drought monitor portal: The foundation for a global drought information system. Earth Interactions, 16(15), 1-28. https://doi.org/10.1175/2012EI000446.1
- Hintz, J.L., & Nelson, R.D. (1998). Violin plots: A box plot-density trace synergism. The American Statistician, 52(2), 181-184.
- Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780. https://doi.org/1162/neco.1997.9.8.1735
- Hu, Y., & Dong, Y. (2018). An automatic approach for land-change detection and land updates based on integrated NDVI timing analysis and the CVAPS method with GEE support. ISPRS Journal of Photogrammetry and Remote Sensing, 146, 347-359. https://doi.org/10.1016/j.isprsjprs.2018.10.008
- Jackson, R.D., Kustas, W.P., & Choudhury, B.J. (1988). A reexamination of the crop water stress index. Irrigation Science, 9, 309-317.
- Karimzadegan, S., Behmanesh, J., & Rezaie, H. (2018). Application of bayesian network and LS-SVM methods in predicting water surface level of Urmia Lake. Journal of Water and Soil Conservation, 25(3), 2018.
- Kazempour Choursi, S., Erfanian, M., & Ebadi Nehari, Z. (2019). Evaluation of MODIS and TRMM satellite data for drought monitoring in the Urmia lake basin. Journal of Geography and Environmental Planning, 30(2), 74.
- Kogan, F.N. (1995). Droughts of the late 1980s in the United States as derived from NOAA polar-orbiting satellite data. Bulletin of the American Meteorological Society, 76(5), 655-668. https://doi.org/10.1175/1520-0477
- Komasi, M., & Sharghi, S. (2020). Drought forecasting using wavelet-support vector machine and standardized precipitation index (Case study: Urmia Lake-Iran). Journal of Environmental Science and Technology, 22(7), 83-101.
- Khosravi, I., Akhundzadeh, M., & Khoshgovtar, M. (2015). Modeling and forecasting the time series of drought indicators with machine learning methods in order to manage risks (case study: Eastern region of Isfahan). Environmental Risk Management, 2(1), 51-65. (In Persian with English abstract)
- LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444.
- Li, X., Yuan, W., & Dong, W. (2021). A machine learning method for predicting vegetation indices in China. Remote Sensing, 13(6), 1147. https://doi.org/10.3390/rs13061147
- Maroufpoor, S., Maroufpoor, E., Bozorg-Haddad, O., Shiri, J., & Yaseen, Z.M. (2019). Soil moisture simulation using hybrid artificial intelligent model: Hybridization of adaptive neuro fuzzy inference system with grey wolf optimizer algorithm. Journal of Hydrology, 575, 544-556. https://doi.org/10.1016/j.jhydrol.2019.05.045
- Mohammadi, H., Nasiri Kashani, K., Maleki, S., & Rostami, H. (2018). Identify and prioritize he factors affecting on the drying of Urmia Lake with Integrated Fuzzy DEMATEL; Analytic Network Process (F.D.ANP). Emergency Management, 7(1), 13-26.
- Nash, J.E., & Sutcliffe, J.V. (1970). River flow forecasting through conceptual models part I—A discussion of principles. Journal of Hydrology, 10(3), 282-290. https://doi.org/10.1016/0022-1694(70)90255-6
- Nay, J., Burchfield, E., & Gilligan, J. (2018). A machine-learning approach to forecasting remotely sensed vegetation health. International Journal of Remote Sensing, 39(6), 1800-1816. https://doi.org/10.1080/01431161.2017.1410296
- Niasati, Z., Ebadi, H., & Kayani, A. (2021). Estimation of reference evaporation and transpiration using remote sensing data in Hamadan Bahar Plain. Iran Water Research, 15(4), 45- (In Persian with English abstract)
- Prodhan, F.A., Zhang, J., Hasan, S.S., Sharma, T.P.P., & Mohana, H.P. (2022). A review of machine learning methods for drought hazard monitoring and forecasting: Current research trends, challenges, and future research directions. Environmental Modelling & Software, 149, 105327.
- Qian, Y., Zhou, W., Yan, J., Li, W., & Han, L. (2015). Comparing machine learning classifiers for object-based land cover classification using very high resolution imagery. Remote Sensing, 7(1), 153-168. https://doi.org/10.3390/rs70100153
- Rao, C. (1973). 10.1002/9780470316436, John Wiley and Sons, New York.
- Rezaei Moghadam, M.H., Valizadehkamran, Kh., Rostamzadeh, H., & Rezaei, A. (2012) Evaluation of theefficiency of MODIS sensor data in estimating drought (Case study: Urmia Lake catchment). Geographyand Environmental Sustainability, 5: 37-52.
- Reddy, D.S., & Prasad, P.R.C. (2018). Prediction of vegetation dynamics using NDVI time series data and LSTM. Modeling Earth Systems and Environment, 4(1), 409-419.
- Rhif, M., Abbes, A.B., Martinez, B., & Farah, I.R. (2020). A deep learning approach for forecasting non-stationary big remote sensing time series. Arabian Journal of Geosciences, 13(22), 1-11.
- Sattari, M.T., Apaydin, H., Ozturk, F., & Baykal, N. (2012). Application of a data mining approach to derive operating rules for the Eleviyan irrigation reservoir. Lake and Reservoir Management, 28(2), 142-152. https://doi.org/10.1080/07438141.2012.678927
- Sharifipour, L., Ghanei-Bafghi, M., Kosari, M., & Sharifipour, S. (2021). Comparing the efficiency of four artificial intelligence methods in drought prediction. Scientific Journal System, 8(3), 139-156. (In Persian with English abstract)
- Shamloo, N., Sattari, M.T., & Apaydin, H. (2022). Agricultural drought survey using MODIS-based image indices at the regional scale: case study of the Urmia Lake Basin, Iran. Theoretical and Applied Climatology, 149(1-2), 39-51.
- Shen, R., Huang, A., Li, B., & Guo, J. (2019). Construction of a drought monitoring model using deep learning based on multi-source remote sensing data. International Journal of Applied Earth Observation and Geoinformation, 79, 48-57. https://doi.org/10.1016/j.jag.2019.03.006
- Shao, Y., & Lunetta, R.S. (2012). Comparison of support vector machine, neural network, and CART algorithms for the land-cover classification using limited training data points. ISPRS Journal of Photogrammetry and Remote Sensing, 70, 78-87. https://doi.org/10.1016/j.isprsjprs.2012.04.001
- Smith, L. (2002). A Tutorial on Principal Components Analysis. Page 1-26.
- Taylor, K.E. (2001). Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research: Atmospheres, 106(D7), 7183-7192.https://doi.org/10.1029/2000JD900719
- Tucker, C.J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8(2), 127-150. https://doi.org/10.1016/0034-4257(79)90013-0
- Vapnik, V.N. (1995). The nature of statistical learning. Theory.
- Willmott, C.J., & Matsuura, K. (2005). Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Research, 30(1), 79-82. https://doi.org/10.3354/cr030079
- Winkler, K., Gessner, U., & Hochschild, V. (2017). Identifying droughts affecting agriculture in Africa based on remote sensing time series between 2000–2016: rainfall anomalies and vegetation condition in the context of ENSO. Remote Sensing, 9(8), 831. https://doi.org/10.3390/rs9080831
- Yin, J., Zhan, X., Hain, C.R., Liu, J., & Anderson, M.C. (2018). A method for objectively integrating soil moisture satellite observations and model simulations toward a blended drought index. Water Resources Research, 54(9), 6772-6791. https://doi.org/10.1029/2017WR021959
- Zhu, X.X., Tuia, D., Mou, L., Xia, G.-S., Zhang, L., Xu, F., & Fraundorfer, F. (2017). Deep learning in remote sensing: A comprehensive review and list of resources. IEEE Geoscience and Remote Sensing Magazine, 5(4), 8-36. https://doi.org/1109/MGRS.2017.2762307
|