- Amirinejad, A.A., Sayyari, M., Ghanbari, F., & kordi, S. (2017). Salycilic acid improves salinity alkalinity tolerance in pepper (Capsicum annuum). Advances in Horticultural Science, 31, 157-163. https://doi.org/10.13128/ahs-21954
- Baninasab, B., & Ghobadi, C. (2011). Influence of Paclobutrazol and application methods on high-temperature stress injury in cucumber seedlings. Journal of Plant Growth Regulation, 30(2), 213-219. https://doi.org/10.1007/s00344-010-9188-2
- Bates, L., Waldren, R., & Teare, I. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205-207. https://doi.org/10.1007/BF00018060
- Bayat, H., Mardani, H., Arouie, H., & Salahvarzi, Y. (2011). Effects of salicylic acid on morphological and physiological characteristics of cucumber seedling (Cucumis sativus Super Dominus) under drought stress. Journal of Plant Production, 18, 63-76. (In Persian with English abstract). httpd://doi.org/20.1001.1.23222050.1390.18.3.5.8
- Bingwei, Y., Shuangshuang, Y., Huoyan, Z., Riyue, D., Jianjun, L., Changming, C., & Bihao, C. (2018). Overexpression of CsCaM3 improves high temperature tolerance in cucumber. Frontiers in Plant Science, 9, 797. https://doi.org/10.3389/fpls.2018.00797
- Chen, S., Zhao, C.B., Ren, R.M., & Jiang, J.H. (2023). Salicylic acid had the potential to enhance tolerance in horticultural crops against abiotic stress. Frontiers in Plant Science, 16, 443-457. https://doi.org/10.3389/fpls.2023.1141918
- Ding, X., Jiang, Y., Hao, T., Jin, H., Zhang, H., He, L., Zhou, Q., Huang, D., Hui, D., & Yu, J. (2016). Effects of heat shock on photosynthetic properties, antioxidant enzyme activity, and downy mildew of cucumber (Cucumis sativus). PLoS One, 11, 4 e0152429. https://doi.org/10.1371/journal.pone.0152429
- Giannopolitis, C.N., & Ries, S.K. (1997). Superoxid dismutase. I. occurrence in higher plants. Plant Physiology, 59, 309-314. https://doi.org/10.1104/pp.59.2.309
- Hasanuzzaman, M.K., Nahar, M., Alam, R., Roychowdhury, & Fujita, M. (2013). Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plant. International Journal of Molecular Sciences, 14(5), 9643-9684. https://doi.org/10.3390/ijms14059643
- Hongal, D., Raju, D., Kumar, S., Talukdar, A., Das, A., Kumari, K., Dash, P.K., Behera, T.K., Munshi, A.D., & Dey, S.S. )2023(. Elucidating the role of key physio-biochemical traits and molecular network conferring heat stress tolerance in cucumber. Frontiers in Plant Science, 20, 498-512. https://doi.org/10.3389/fpls.2023.1128928
- Jahan, M.S., Wang, Y., Shu, Sh., Zhong, M., Chen, Z., Wu, J., Sun, J., & Guo, Sh. (2019). Exogenous salicylic acid increases the heat tolerance in Tomato (Solanum lycopersicum) by enhancing photosynthesis efficiency and improving antioxidant defense system through scavenging of reactive oxygen species. Scientia Horticulturae, 247, 421-429. https://doi.org/10.1016/j.scienta.2018.12.047
- Karlidag, H., Yildirim, E., & Turan, M. (2009). Salicylic acid ameliorates the adverse effect of salt stress on strawberry. Scientia Agricola, 66, 180-187. https://doi.org/10.1590/S0103-90162009000200006
- Khan, W., Prithiviraj, B., & Smith, D.L. (2003). Photosynthetic response of corn and soybean to foliar application of salicylates. Journal of Plant Physiology, 160, 485-492. https://doi.org/10.1078/0176-1617-00865
- Kusvuran, S., & Yilmaz, U.D. (2023). Ameliorative role of salicylic acid in the growth, nutrient content, and antioxidative responses of salt-stressed lettuce. Acta Scientiarum Polonorum Hortorum Cultus, 22, 75-85.
- Lutts, S., Kinet, J.M., & Bouharmon, J. (1996). NaCl-induced senescence in leave of rice (Oryza sativa) cultivars differing in salinity resistance. Annals of Botany, 78, 389-398. https://doi.org/10.1006/anbo.1996.0134
- Orabi, S.A., Salman, S.R., & Shalaby, M.A. (2010). Increasing resistance to oxidative damage in cucumber (Cucumis sativus) plants by exogenous application of salicylic acid and paclobutrazol. World Journal of Agricultural Sciences, 25, 252-259.
- Prasad, T.K. (1997). Role of catalase in inducing chilling tolerance in pre-emergance maize seedlings. Plant Physiology, 114, 1369-1376. https://doi.org/10.1006/anbo.1996.0134
- Preet, T., Ghai, N., Jindal, S.K., & SANGHA, M. (2023). Salicylic acid and 24-Epibrassinolide induced thermotolerance in bell pepper through enhanced antioxidant enzyme system and heat shock proteins. Journal of Agricultural Science and Technology, 25, 171-183. https://doi.org/10.52547/jast.25.1.171
- Rivero, R.M., Ruiz, J.M., Garcıa, P.C., Lopez-Lefebre, L.R., Sánchez, E., & Romero, L. (2001). Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants. Plant Science, 160, 315-321. https://doi.org/10.1016/S0168-9452(00)00395-2
- Samadi, S., Habibi, G., & Vaziri, A. (2019). Effects of exogenous salicylic acid on antioxidative responses, phenolic metabolism and photochemical activity of strawberry under salt stress. Iranian Journal of Plant Physiology, 9(2), 2685-2694. https://doi.org/10.30495/ijpp.2019.545950
- Shakirova, F.M., Shakhabutdinova, A.R., Bezrukova, M.V., Fatkhutdinova, R.A., & Fatkhutdinova, D.R. (2003). Changes in the hormonal status of wheat seeding induced by salicylic acid and salinity. Plant Sciences, 164, 317-322. https://doi.org/10.1016/S0168-9452(02)00415-6
- Shi, Q., Bao, Z., Zhu, Z., Ying, Q., & Qian, Q. (2006). Effects of different treatments of salicylic acid on heat tolerance, chlorophyll flurescence and antioxidant enzyme activity in seedlings of Cucumis sativa Plant Growth Regulation, 48, 127-135. https://doi.org/10.1007/s10725-005-5482-6
- Smirnoff, N., Conklin, P.L., & Loewus, F.A. (2001). Biosynthesis of ascorbic acid in plants: a renaissance. Annual Review of Plant Physiology and Plant Molecular Biology, 52, 437-467. https://doi.org/10.1146/annurev.arplant.52.1.437
- Soliva, R.C., Elez, P., Sebastián, M., & Martín, O. (2001). Evaluation of browning effect on avocado purée preserved by combined methods. Innovative Food Science & Emerging Technologies, 1, 261-268. https://doi.org/10.1016/S1466-8564(00)00033-3
- Sousa, V.F.O., Santos, A.S., Sales, W.S., Silva, A.J., Gomes, F.A.L., Dias, T.J., Gonçalves-Neto, A.C., Faraz, A., Santos, J.P.O., Santos, G.L. & Cruz, J.M.F.L. (2022). Exogenous application of salicylic acid induces salinity tolerance in eggplant seedlings. Brazilian Journal of Biology 24: 84-105 https://doi.org/10.1590/1519-6984.257739
- Taher, I.E., & Ami, S.N. (2022). Inducing systemic acquired resistance (SAR) against root-knot nematode Meloidogyne javanica and evaluation of biochemical changes in cucumber root. Helminthologia 59 (4): 404-413. https://doi.org/10.2478/helm-2022-0042
- Taheri, M. & Haghighi, M. (2018). Benzyl adenine is more effective than potassium silicate on decreasing the detrimental effects of heat stress in pepper (Capsicum annum PS301). Iran Agricultural Research 37: 89-98. https://doi.org/10.22099/iar.2018.4890
- Yildirim, E., Turan, M. & Guvenc, I. (2008). Effect of Foliar Salicylic Acid Applications on Growth, Chlorophyll, and Mineral Content of Cucumber Grown Under Salt Stress, Journal of plant nutrition 31 (3): 593-612. http://dx.doi.org/10.1080/01904160801895118
- Yordanova, R. & Popova, L. (2007). Effect of exogenous treat with salicylic acid on photosynthetic activity and antioxidant capacity of chilled wheat plants. Plant physiology 33: 155-170. http://obzor.bio21.bas.bg/ipp/gapbfiles/v-33/07_3-4_155-170
|