- Albarrán-Portillo, B., & Pollott, G. E. (2013). The relationship between fertility and lactation characteristics in Holstein cows on United Kingdom commercial dairy farms. Journal of Dairy Science, 96(1), 635-646. https://doi.org/3168/jds.2012-5632.
- Ali, A., & Shook, G. (1980). An optimum transformation for somatic cell concentration in milk. Journal of Dairy Science, 63, 487-490. https://doi.org/3168/jds.S0022-0302(80)82959-6.
- Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software, 67(1), 1-48. https://doi.org/18637/jss.v067.i01.
- Bohlouli, M., Shodja, J., & Alijani, S. (2013). Investigation of interaction between genotype and production level in Iranian Holstein dairy cattle using test day records. Journal of Ruminant Research, 1, 93-108.
- Chang, Y. M., Gonza´lez-Recio, O., Weigel, K. A., & Fricke, P. M. (2007). Genetic analysis of the twenty-one-day pregnancy rate in us holsteins using an ordinal censored threshold model with unknown voluntary waiting period. Journal of Dairy Science, 90, 1987-1997. https://doi.org/3168/jds.2006-359.
- Cochran, S. D., Cole, J. B., Null, D. J., & Hansen, P. J. (2013). Discovery of single nucleotide polymorphisms in candidate genes associated with fertility and production traits in Holstein cattle. BMC Genetics, 14, 49. https://doi.org/1186/1471-2156-14-49.
- Coleman, J., Pierce, K. M., Berry, D. P., Brennan, A., & Horan, B. (2009). The influence of genetic selection and feed system on the reproductive performance of spring-calving dairy cows within future pasture-based production systems. Journal of Dairy Science, 92, 5258–5269. https://doi.org/3168/jds.2009-2108.
- Craig, H. J. B., Stachowicz, K., Black, M., Parry, M., Burke, C., Meier, S., & Amer, P. (2018). Genotype by environment interactions in fertility traits in New Zealand dairy cows. Journal of Dairy Science, 101, 10991–11003. https://doi.org/3168/jds.2017-14195.
- Cranford, J. L., & Pearson, R. E. (2001). Relationships of sire predicted transmitting ability for somatic cell score with measures of daughter performance. Journal of Dairy Science, 84, 1501–1507.
- Dechow, D., Goodling, R. C., & Rhode, S. P. (2012). The effect of sire selection on cow mortality and early lactation culling in adverse and favorable cow survival environments. Preventive Veterinary Medicine, 103, 228-233. https://doi.org/10.1016/j.prevetmed.2011.09.020.
- Dematawewa, C. M. P., & Berger, P. J. (1998). Genetic and phenotypic parameters for 305-day yield, fertility, and survival in Holsteins. Journal of Dairy Science, 81, 2700-2709. https://doi.org/3168/jds.S0022-0302(98)75827-8.
- Dunne, F. L., McParland, S., Kelleher, M. M., Walsh, S. W., & Berry, D. P. (2019). How herd best linear unbiased estimates affect the progress achievable from gains in additive and nonadditive genetic merit. Journal of Dairy Science, 102, 5295–5304. https://doi.org/3168/jds.2018-16119.
- Effa, K., Hunde, D., Shumiye, M., & Silasie, R. H. (2013). Analysis of longevity traits and lifetime productivity of crossbred dairy cows in the tropical highlands of Ethiopia. Journal of Cell and Animal Biology, 7, 138-143. https://doi.org/5897/JCAB2013.0375.
- Gobikrushanth, M., Macmillan, K., Hipkin, D., & Colazo, M. G. (2020). The relationships among sire’s predicted transmitting ability for daughter pregnancy rate and cow conception rate and daughter’s reproductive performance in Canadian Holstein cows. Theriogenology, 149, 117-122. https://doi.org/1016/j.theriogenology.2020.03.026.
- Lombard, J. E., Garry, F. B., Tomlinson, S. M., & Garber, L. P. (2007). Impacts of Dystocia on Health and Survival of Dairy Calves. Journal of Dairy Science, 90, 1751-1760. https://doi.org/10.3168/jds.2006-295.
- Lopez-Villalobos, N., Wiles, P. G., & Garrick, D. J. (2020). Sire selection and genetic improvement of dairy cattle assuming pure market competition. Journal of Dairy Science, 103, 4532-4544. https://doi.org/10.3168/jds.2019-17582.
- Newton, J. E., Goddard, M. E., Phuong, H. N., Axford, M. A., Ho, C. K. M., Nelson, N. C., Waterman, C. F., Hayes, B. J., & Pryce, J. E. (2017). High genetic merit dairy cows contribute more to farm profit: Case studies of 3 Australian dairy herds. Association for the Advancement of Animal Breeding and Genetics, 22, 19–22.
- Norman, D., Wright, J. R., Hubbard, S. M., Kuhn, M. T., & Miller, R. H. (2007). Genetic selection for reproduction: current reproductive status of the national herd: application of selection indexes for dairy producers. pp. 69-78. In: Dairy Cattle Reproductive Conference, Denver.
- Oikonomou, G., Cook, N. B., & Bicalho, R. C. (2013). Sire predicted transmitting ability for conformation and yield traits and previous lactation incidence of foot lesions as risk factors for the incidence of foot lesions in Holstein cows. Journal of Dairy Science, 96(6), 3713-3722. https://doi.org/3168/jds.2012-6308.
- Ortega, M. S., Denicol, A. C., Cole, J. B., Null, D. J., Taylor, J. F., Schnabel, R. D., & Hansen, P. J. (2017). Association of single nucleotide polymorphisms in candidate genes previously related to genetic variation in fertility with phenotypic measurements of reproductive function in Holstein cows. Journal of Dairy Science, 100, 3725-3734. https://doi.org/10.3168/jds.2016-12260.
- O’Sullivan, M., Horan, B., Pierce, K. M., McParland, S., O’Sullivan, K., & Buckley, F. (2019). Milk production of Holstein-Friesian cows of divergent Economic Breeding Index evaluated under seasonal pasture-based management. Journal of Dairy Science, 102, 2560–2577. https://doi.org/10.3168/jds.2018-15559.
- Ramsbottom, G., Cromie, A. R., Horan, B., & Berry, D. P. (2012). Relationship between dairy cow genetic merit and profit on commercial spring calving dairy farms. Animal, 6, 1031–1039. https://doi.org/10.1017/S1751731111002503.
- R Core Team. (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
- Rodrigo, C. B., Carla, F., Rob, G., & Georgios, O. (2014). The effect of sire predicted transmitting ability for production traits on fertility, survivability, and health of Holstein dairy cows. Theriogenology, 81, 257-265. https://doi.org/1016/j.theriogenology.2013.09.023.
- Tsuruta, S., Misztal, I., & Lawlor, T. J. (2005). Changing definition of productive life in US Holsteins: Effect on genetic correlations. Journal of Dairy Science, 88, 1156-1165. https://doi.org/3168/jds.S0022-0302(05)72782-X.
- VanRaden, P. M., Dematawewa, C. M. B., Pearson, R. E., & Tooker, M. E. (2006). Productive life including all lactations and longer lactations with diminishing credits. Journal of Dairy Science, 89(8), 3213-3220. https://doi.org/3168/jds.S0022-0302(06)72596-6.
- Veronese, , Marques, O., Moreira, R., Belli, A. L., Bisinotto, R. S., Bilby, T. R., Penagaricano, F., & Chebel, R. C. (2019). Genomic merit for reproductive traits. I: estrous characteristics and fertility in Holstein heifers. Journal of Dairy Science, 102, 6624-6638. https://doi.org/10.3168/jds.2018-15205.
|