- Ahmed, A.H.H., Darwish, E., & Alobaidy, M.G. (2017). Impact of putrescine and 24-epibrassinolide on growth, yield and chemical constituents of cotton (Gossypium barbadense ) plant grown under drought stress conditions. Asian Journal of Plant Sciences, 16(1), 9-23. https://doi.org/10.3923/ajps.2017.9.23
- Ahmed, M.MR.M., & Sadak, M.Sh. (2016). Effect of putrescine foliar application on Wheat genotypes (Triticum aestivum) under water stress conditions. International Journal of Pharmtech Research, 9(8), 94-102.
- Amooaghaie,, & Moghym, S. (2011). Effect of polyamines on thermo tolerance and membrane stability of soybean seedling. African Journal of Biotechnology, 10, 9673-9679. https://doi.org/10.5897/ajb10.2446
- Amri, E., & Mohammadi, M.J. (2012). Effects of timing of drought stress on pomegranate seedlings (Punica granatum cv ‘Atabaki’) to exogenous spermidine and putrescine polyamines. African Journal of Microbiology Research, 6(25), 5294-5300. https://doi.org/10.5897/AJMR11.1355
- Arji, I., Arzani, K., & Mirlatifi, M. (2002). Effect of different irrigation amounts on physiological and anatomical responses of olive (Olea europaea cv. Zard). Journal of Soil and Plant Sciences, 16(1), 112-120. (In Persian with Engligh abstract)
- Bolat, I., Dikilitas, M., Ercisli, S., Ikinci, A., & Tonkaz, T. (2014). The effect of water stress on some morphological, physiological, and biochemical characteristics and bud success on apple and quince rootstocks. The Scientific World Journal, 769732, 1-8. https://doi.org/10.1155/2014/769732
- Cameron, R.W.F., Harrison- murray, R.S., & Seott, M.A. (1999). The use of controlled water stress to manipulate growth of container- grown Rhododendron CV. Happy. Journal of Horticultural Science and Biotechnology, 74, 161-169. https://doi.org/10.1080/14620316.1999.11511089
- Chartzoulakis, K., Bosabalidis, A., Patakas, A., & Vemmos, S. (1993). Effect of water stress on water realtions, gas exchange and leaf structure of olive trees. Acta Horticulturae, 537, 241-247. https://doi.org/10.17660/ActaHortic.2000.537.25
- Downton, W.J., Loveys, B.R., & Grant, W.J.R. (2006). Salinity effects on the stomatal behavior of grapevine. New Phytology, 116, 499–503. https://doi.org/10.1111/j.1469-8137.1990.tb00535.x
- Duan, J., Li, J., Guo, Sh., & Kang, Y. (2008). Exogenous spermidine affects polyamine metabolism in salinity-stressed Cucumis sativus roots and enhances short-term salinity tolerance. Journal of Plant Physiology, 165, 1620-1635. https://doi.org/10.1016/j.jplph.2007.11.006
- Fifaei,, Taheri, H., Tajvar, Y., & Gholamian, E. (2022). Effect of water stress on some morphological and physiological characteristics of Citrus natural genotypes seedling. Journal of Horticultural Science, 36(1), 103-115. (In Persian with Engligh abstract). https://doi.org/10.22067/JHS.2021.69052.1027
- Fotohi Ghazvini, R.O., & Fatahi Moghadam, J. (2016). Breeding citrus in Iran. (4th). Gilan University Press. (In Persian)
- Gupta, , Agarwal, V.P., & Gupta, N.K. (2012). Efficacy of putrescine and benzyladenine on photosynthesis and productivity in relation to drought tolerance in wheat (Triticum aestivum L.). Physiology and Molecular Biology of Plants, 18(4), 331–336. https://doi.org/10.1007/s12298-012-0123-9
- Hasan, M., Skalicky, M., Jahan, M.S., Hossain, M., Anwar, Z., Nie, Z.F., Alabdallah, N.M., Brestic, M., Hejnak, V., & Fang, X.W. (2021). Spermine: Its emerging role in regulating drought stress responses in plants. Cells, 10(2), 261. https://doi.org/10.3390/cells10020261
- Hojjatipour, H., & Hassanpour Asil, M. (2022). Effect of gibberellic acid and putrescine on growth, flowering and vase life of Lily cut flower (ʻLesothoʼ). Journal of Horticultural Science, 36(1), 163-175. (In Persian with Engligh abstract). https://doi.org/22067/JHS.2021.69012.1025
- Hossain, A.B.S., Sears, R.G., Cox, T.S., & Paulses, G.M. (1990). Desiccation tolerance and its relationship to assimilate partitioning in winter wheat. Crop Science, 30(3), 622-627. https://doi.org/10.2135/cropsci1990.0011183X003000030030x
- Hu, Y.Y., Zhang, Y.L., Yi, X.P., Zhan, D.X., Luo, H.H., Chow, W.S., & Zhang, W.F. (2013). The relative contribution of non-foliar organs of cotton to yield and related physiological characteristics under water deficit. Journal of Integrative Agriculture, 3119(13), 60568-7. https://doi.org/10.1016/S2095-3119(13)60568-7
- Hussein, M.M., Nadia EL-Gereadly, H.M., & EL-Desuki, M. (2006). Role of putrescine in resistance to salinity of pea plants (Pisum sativum L.). Applied Science Research, 2(9), 598-604.
- Ioannidis, E., & Kotzabasis, K. (2007). Effects of polyamines on the functionality of photosynthetic membrane in vivo and in vitro. Biochimica et Biophysica Acta, 1767, 1372–1382. https://doi.org/10.1016/j.bbabio.2007.10.002
- Kamiab, F., Talaie, A.R., Khezri, M., & Javanshah, A. 2013. Exogenous application of free polyamines enhance salt tolerance of pistachio (Pistacia vera ) seedlings. Plant Growth Regulators, 72(3), 257-268. https://doi.org/10.1007/s10725-013-9857-9
- Krouma, A., Fujimura, T., & Abdely, C. (2015). Growth, photosynthetic activity and water relations three Tunsian chickpea genotypes (Cicer arietinum ) subjected to a progressive water deficit stress. International Research Journal, 5, 206-214.
- Lobato, A.K.S., Oliveira Neto, C.F., Santos Filho, B.G., Costa, R.C., Cruz, F.J.R., Neves, H.K.B., & Lopes, M.J.S. (2008). Physiological and biochemical behavior in soybean (Glycine max) plants under water deficit. Australian Journal Crop Science, 2(1), 25-32.
- Lopez, F.B., Setter, T.L., & McDavid, C.R. (1988). Photosynthesis and water vapor exchange of pigeonpea leaves in response to water deficit and recovery. Crop Science, 28(1), 141-145. https://doi.org/10.2135/cropsci1988.0011183X002800010030x
- Majidiyan, N. (2013). Study some aspects of flower Senescence in Asiatic hybrid lily Seb Dassel. Ph.D. Thesis. Faculty of Agriculture Tehran University, Iran. (In Persian)
- Mahdavian, M., Sarikhani, H., Hadadinejad, M., & Dehestani, A. (2017). Biochemical and morphological response of Carrizo citrange and Volkameriana rootstocks to putrescine and water stress. In I International Conference and X National Horticultural Science Congress of Iran (IrHC2017) 1315 (pp. 55-62)
- Mahdavian, M., Sarikhani, H., Hadadinejad, M., & Dehestani, A. (2021). Exogenous application of putrescine positively enhances the drought stress response in two citrus rootstocks by increasing expression of stress-related genes. Journal of Soil Science and Plant Nutrition, 21(3), 1934-1948. https://doi.org/1007/s42729-021-00491-3
- Mohamed, S.A., Ahmed, H.S., & El-Baowab, A.A. (2018). Effect of chitosan, putrescine and irrigation levels on the drought tolerance of sour orange seedlings. Egyptian Journal of Horticulture, 45, 257-273. https://doi.org/10.21608/ejoh.2018.3063.1050
- Mullan, D., & Pietragalla, J. (2012).Physiological breeding II: A field guide to wheat phenotyping. The International Maize and Wheat Improvement Center, CIMMYT.
- Nilsen, E.T., & Orcutt, D.M. (1996). The physiology of plants under stress (Abiotic factors). John Wiley and Sons, New York. 689 p.
- Osuagwu, G.G.E., & Edeoga, H.O. (2012). The influence of water stress (drought) on the mineral and vitamin content of the leaves of Gongronema latifolium (Benth). International Journal of Medicinal and Aromatic Plants, 2(2), 301-309.
- Ritchie, S.W., Nguyen, H.T., & Haloday, A.S. (1990). Leaf water content and gas exchange parameters of two wheat genotype differing in drought resistance. Crop Science, 30, 105-111. https://doi.org/10.2135/cropsci1990.0011183X003000010025x
- Rubinowska, K., Pogroszewska, E., & Michalek, W. (2012). The effect of polyamines on physiological parameters of post- harvest quality of cut stems of Rosa ‘Red Berlin’. Acta Scientiarum Polonorum Hortorum Cultus, 11, 81-93.
- Shafiei, N., Khaleghi, E., & Moallemi, N. (2019). Effect of salicylic acid on some morphological and biochemical characteristics of olive (Olea europaea ‘Konservalia’) under water stress. Plant Production, 42(1), 15-30. (In Persian with English abstract). https://doi.org/10.22055/ppd.2019.22031.1477
- Shaimaa, M. (2018). Effect of chitosan, putrescine and irrigation levels on the drought tolerance of sour orange seedlings. Egyptian Journal of Horticulture, 45(2), 257-273. https://doi.org/10.21608/EJOH.2018.3063.1050
- Siddique, M.R.B., Hamid, A., & Islam, M.S. (2001). Drought stress effects on water relations of wheat. Botanical Bulletin of Academia Sinica, 41, 35–39.
- Singh Gill, S., & Tuteja, N. (2010). Polyamines and abiotic stress tolerance in plant. Plant Signaling and Behavior, 5(1), 26-33. https://doi.org/10.4161/psb.5.1.10291
- Syed Sarfraz, H., Muhammad, A., Maqbool, A., & Kadambot H.M.S. (2011). Polyamines: natural and engineered abiotic and biotic stress tolerance in plants. Biotechnology Advances, 29(3), 300-311. https://doi.org/10.1016/j.biotechadv.2011.01.003
- Tie, Z., Bin, P., Feifei, L.I., Xiaochuan, M.A, Mengjing, T., Xuefei, L., Yuanyuan, C., Yuewen, C., & Xiaopeng, L. (2022). Effects of drought stress at enlargement stage on fruit quality formation of Satsuma mandarin and the law of water absorption and transportation in tree after re-watering. Acta Horticulturae Sinica, 49(1), 11-22. https://doi.org/10.16420/j.issn.0513-353x.2021-0040
- Toupchi Khosrowshahi, Zh., & Slehi-Lisar, S.Y. (2018). Physiological responses of safflower to exogenous putrescine under water deficit. Journal of Stress Physiology & Biochemistry, 14(3), 38-48.
- Tripoli, E., La Guardia, M., Giammanco, S., Di Majo, D., & Giammanco, M. (2007). Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review Food Chemistry, 104(2), 466-479. https://doi.org/10.1016/j.foodchem.2006.11.054
- Wu,S., & Zou, Y.N. (2009). Mycorrhizal influence on nutrient uptake of citrus exposed to drought stress. Philippin Agriculture Scientist, 92(1), 33-38.
- Yin, Z.P., Li, S., Ren, J., & Song, X.S. (2014). Role of spermidine and spermine in alleviation of drought-induced oxidative stress and photosynthetic inhibition in Chinese dwarf cherry (Cerasus humilis) seedlings. Plant Growth Regulation, 74(3), 209-218. https://doi.org/10.1007/s10725-014-9912-1
- Yordanov, I., Velikova, V., & Tsoev, T. (2000). Plant responses to drought, acclimation and stress tolerance. Journal of Photosynthica, 38(2), 171-186. https://doi.org/10.1023/A:1007201411474
- Zandalinas, S.I., Rivero, R.M., Martínez, V., Gómez-Cadenas, A., & Arbona, V. (2016). Tolerance of citrus plants to the combination of high temperatures and drought is associated to the increase in transpiration modulated by a reduction in abscisic acid levels. BMC Plant Biology, 16, 105. https://doi.org/10.1186/s12870-016-0791-7
- Zhang, K., & John, P.C.L. (2005). Raised level of cyclin dependent kinase after prolonged suspension culture of Nicotiana plumbaginifolia is associated with more rapid growth and division, diminished cytoskeleton and lost capacity for regeneration: implications for instability of cultured plant cells. Plant Cell, Tissue Organ Culture, 82(3), 295-308. https://doi.org/10.1007/s11240-005-1542-x
- Zhang, R.H., Li, J., & Guo, S.R. (2009). Effects of exogenous putrescine on gas-exchange characteristics and chlorophyll fluorescence of NaCl-stressed cucumber seedlings. Photosynthesis Research, 100, 155–162. https://doi.org/10.1007/s11120-009-9441-3
|