تحلیل خواص مکانیکی نانوکامپوزیت آلومینیوم- گرافن با نقص جای خالی و حفره به روش دینامیک مولکولی
علوم کاربردی و محاسباتی در مکانیک
مقاله 3 ، دوره 36، شماره 3 - شماره پیاپی 37 ، شهریور 1403، صفحه 33-48 اصل مقاله (2.13 M )
نوع مقاله: مقاله پژوهشی
شناسه دیجیتال (DOI): 10.22067/jacsm.2024.84337.1206
نویسندگان
علی ابراهیمی ؛ مسعود اجری*
گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه محقق اردبیلی، ایران.
چکیده
مطالعه حاضر، خواص مکانیکی از جمله مدول یانگ و تنش استحکام کششی نانوکامپوزیت آلومینیوم تقویت شده با گرافین ناقص با نقص حفره و نقص جایخالی تحت کشش تک محوره با استفاده از شبیهسازی دینامیک مولکولی مورد بررسی قرار داده است. همچنین در این مطالعه اثر تعداد لایههای گرافن در درصد حجمی ثابت، بر روی رفتار مکانیکی نانوکامپوزیت نیز بررسی شده است. این شبیهسازی با کمک پکیج منبع باز لمپس با مدل سازی یک سیستم دورهای با هنگرد NVE و NPT انجام گرفته و برای توصیف اندرکنش اتمهای کربن و آلومینیوم به ترتیب از پتانسیلهای AIREBO و MEAM و همچنین برای اندرکنش بین این اتمها از پتانسیل لناردجونز استفاده شده است. نتایج بدست آمده نشان میدهند که افزودن تک لایه گرافین به ساختار آلومینیوم خالص باعث بهبود مدول یانگ و استحکام کششی آلومینیوم خالص به ترتیب به میزان ۲۲۰ و ۳۲۰ درصد شده است. علاوه بر این مشاهده میشود که اثر نقص جایخالی و نقص حفره بر روی مدول یانگ و استحکام کششی بهصورت غیرخطی بوده و روند کاهشی دارد.
کلیدواژهها
نانوکامپوزیت ؛ خواص مکانیکی ؛ دینامیک مولکولی ؛ گرافن ؛ نقص جای خالی
مراجع
[1] A. A. Balandin, “Thermal properties of graphene and nanostructured carbon materials,” Nature Materials , vol. 10, no. 8, pp. 569-581, (2011).
[2] C. Lee, X. Wei, J. W. Kysar, J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science, vol. 321, no. 5887, pp. 385-388, (2008).
[3] M. Sharma, L. Johnson, and J. W. McClure, “Diamagnetism of graphite,” Physics Letters A , vol. 44, no. 7, pp. 445-446, (1973).
[4] K. Mohammadi, H. Shokrollahi, “Application of SSPH Method in Free Vibration Analysis of Graphene,” Journal of Applied and Computational Sciences in Mechanics , vol. 31, no. 2, pp. 53-66, (2020).
[5] E. Fradkin, “Critical behavior of disordered degenerate semiconductors. I. Models, symmetries, and formalism,” Physical Review B , vol. 33, no. 5, p. 3257, (1986).
[6] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science, vol. 306, no. 5696, pp. 666-669, (2004).
[7] T. Kuilla, S. Bhadra, D. Yao, N. H. Kim, S. Bose, J. H. Lee, “Recent advances in graphene based polymer composites,” Progress in Polymer Science, vol. 35, no. 11, pp. 1350-1375, (2010).
[8] H. Kim, C. W. Macosko, “Processing-property relationships of polycarbonate/graphene composites,” Polymer , vol. 50, no. 15, pp. 3797-3809, (2009).
[9] S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff, “Graphene-based composite materials,” Nature , vol. 442, no. 7100, pp. 282-286, (2006).
[10] M. El Achaby, A. Qaiss, “Processing and properties of polyethylene reinforced by graphene nanosheets and carbon nanotubes,” Materials & Design , vol. 44, pp. 81-89, (2013).
[11] I. Chang, B. C. Chiang, “Mechanical buckling of single-walled carbon nanotubes: Atomistic simulations,” Journal of Applied Physics , vol. 106, no. 11, p. 1143313, (2009).
[12] M. Ayatollahi, S. Shadlou, and M. Shokrieh, “Multiscale modeling for mechanical properties of carbon nanotube reinforced nanocomposites subjected to different types of loading,” Composite Structures , vol. 93, no. 9, pp. 2250-2259, (2011).
[13] M. A. Mostaan, J. Davoodi, H. Alizadeh, M. Yarifard, “Nontrivial tensile behavior of rutile TiO2 nanowires: a molecular dynamics study,” The European Physical Journal B , vol. 91, pp. 1-6, (2018).
[14] H. Alizadeh, M. A. Mostaan, N. Malih, J. Davoodi, “Size and shape dependent thermal properties of rutile TiO2 nanoparticles: a molecular dynamics simulation study,” Molecular Simulation , vol. 46, no. 5, pp. 341-349, (2020).
[15] M. Binghi, S. Rahnama, A. Dadrasi, “Analysis of fracture behavior of carbon nitride poly crystalline by genetic algorithm and molecular dynamics methods,” Journal of Applied and Computational Sciences in Mechanics , vol. 36, no. 2, pp. 29-46, (2023), doi: 10.22067/JACSM.2023.83323.1192.
[16] A. Albooyeh, A. Dadrasi, M. Razavikia, “Investigation of the Effect of Geometric Defects and Temperature Changes on the Fracture Behavior of Boron Carbide Monocrystalline Structure by Molecular Dynamics,” Journal of Applied and Computational Sciences in Mechanics, vol. 34, no. 27, pp. 37-48, (2022). doi:10.22067/JACSM.2023.83323.1192.
[17] M. A. H. Khotbesara, M. Ajri, M. Samadiyan, “Mechanical properties analysis of a monolayer biphenylene at different temperatures,” Journal of Modeling in Engineering , vol. 22, no. 76, pp. 177-178, (2023). doi:10.22075/JME.2023.31122.2485.
[18] M. Samadian, M. Ajri, A. zizi, M. A. H. Khotbesara, “Investigating the pinhole effect on the mechanical properties of biphenylene,” Applied Physics A , vol. 129, pp.826-837, (2023), doi: https://doi.org/10.1007/s00339-023-07112-z.
[19] F. Lin, Y. Xiang, and H. S. Shen, “Buckling of graphene embedded in polymer matrix under compression,” International Journal of Structural Stability and Dynamics , vol. 15, no. 07, p. 1540016, (2015).
[20] Y. Y. Zhang, Y. T. Gu, “Mechanical properties of graphene: Effects of layer number, temperature and isotope,” Computational Materials Science , vol. 71, pp. 197-200, (2013).
[21] Y. Song, Y. Chen, W. W. Liu, W. L. Li, Y. G. Wang, D. Zhao, X. B. Liu, “Microscopic mechanical properties of titanium composites containing multi-layer graphene nanofillers,” Materials & Design , vol. 109, pp. 256-263, (2016).
[22] H. Wang, G. Xie, Z. Ying, Y. Tong, Y. Zeng, “Enhanced mechanical properties of multi-layer graphene filled poly (vinyl chloride) composite films,” Journal of Materials Science & Technology , vol. 31, no. 4, pp. 340-344, (2015).
[23] H. Kwon, D. H. Park, J. F. Silvain, and A. Kawasaki, “Investigation of carbon nanotube reinforced aluminum matrix composite materials,” Composites Science and Technology , vol. 70, no. 3, pp. 546-550, (2010).
[24] A. K. Srivastava, M. K. Dikshit, V. K. Pathak, L. Khurana, “A molecular dynamics study of the buckling behaviour of graphene-reinforced aluminum nanocomposite plate,” Materials Physics and Mechanics , vol. 42, pp. 234-241, (2019).
[25] M. A. Farsi, A. R. Sehat, “Experimental and Numerical Study on Aluminum Damage Using a Nonlinear Model of Continuum Damage Mechanics,” Journal of Applied and Computational Sciences in Mechanics , vol. 27, no. 2, pp. 41-54, (2016).
[26] A. Bashiri, M. Hosseini, H. Hatami, “Experimental and Numerical Analysis of Single and Double layered Aluminum Sheet 3105 With Mechanical Joints under Drop Weight Impact,” Journal of Applied and Computational Sciences in Mechanics, vol. 30, no. 2, pp. 109-123, (2019).
[27] S. E. Shin, H. J. Choi, J. H. Shin, D. H. Bae, “Strengthening behavior of few-layered graphene/aluminum composites,” Carbon , vol. 82, pp. 143-151, (2015).
[28] C. Li, A. R. Browning, S. Christensen, A. Strachan, “Atomistic simulations on multilayer graphene reinforced epoxy composites,” Composites Part A: Applied Science and Manufacturing , vol. 43, no. 8, pp. 1293-1300, (2012).
[29] P. Sedigh, A. Zare, A. Montazeri, “Evolution in aluminum applications by numerically-designed high strength boron-nitride/Al nanocomposites,” Computational Materials Science , vol. 171, p. 109227, (2020).
[30] A. Du, Y. Chen, Z. Zhu, R. Amal, G. Q. Lu, S. C. Smith, “Dots versus antidots: computational exploration of structure, magnetism, and half-metallicity in boron− nitride nanostructures,” Journal of the American Chemical Society , vol. 131, no. 47, pp. 17354-17359, (2009).
[31] Q. L. Xiong, Z. H. Li, X. G. Tian, “The defect-induced fracture behaviors of hexagonal boron-nitride monolayer nanosheets under uniaxial tension,” Journal of Physics D: Applied Physics , vol. 48, no. 37, p. 375502, (2015).
[32] A. Mokhalingam, D. Kumar, A. Srivastava, “Mechanical behaviour of graphene reinforced aluminum nano composites,” Materials Today: Proceedings , vol. 4, no. 2, pp. 3952-3958, (2017).
[33] S. N. A. Kalkhoran, M. Vahvadi, “The Effect of Interatomic Potential Function on Nanometric Machining of Single Crystal Silicon,” Journal of Applied and Computational Sciences in Mechanics, vol. 30, no. 2, pp. 17-32, (2019).
[34] E. Lee, B-J. Lee, “Modified embedded-atom method interatomic potential for the Fe–Al system,” Journal of Physics: Condensed Matter , vol. 22, no. 17, p. 175702, (2010).
[35] S. J. Stuart, A. B. Tutein, J. A. Harrison, “A reactive potential for hydrocarbons with intermolecular interactions,” The Journal of Chemical Physics , vol. 112, no. 14, pp. 6472-6486, (2000).
[36] A. Kumar Srivastava, V. Kumar Pathak, “Elastic properties of graphene-reinforced aluminum nanocomposite: Effects of temperature, stacked, and perforated graphene,” Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications , vol. 234, no. 9, pp. 1218-1227, (2020).
[37] B. K. Choi, G. H. Yoon, S. Lee, “Molecular dynamics studies of CNT-reinforced aluminum composites under uniaxial tensile loading,” Composites Part B: Engineering , vol. 91, pp. 119-125, (2016).
[38] M. González, “Force fields and molecular dynamics simulations,” École thématique de la Société Française de la Neutronique , vol. 12, pp. 169-200, (2011).
[39] S. Plimpton, “Fast parallel algorithms for short-range molecular dynamics,” Journal of Computational Physics, v ol. 117, no. 1, pp. 1-19, (1995 ).
[40] Y. Rong, H. He, L. Zhang, N. Li, Y. Zhu, “Molecular dynamics studies on the strengthening mechanism of Al matrix composites reinforced by grapnene nanoplatelets,” Computational Materials Science , vol. 153, pp. 48-56, (2018).
[41] J. Li, Y. C. Xiong, X. D. Wang, S. J. Yan, C. Yang, W. W. He, J. Z. Chen, S. Q. Wang, X. Y. Zhang, S. L. Dai, “Microstructure and tensile properties of bulk nanostructured aluminum/graphene composites prepared via cryomilling,” Materials Science and Engineering: A, vol. 626, pp. 400-405, (2015).
آمار
تعداد مشاهده مقاله: 479
تعداد دریافت فایل اصل مقاله: 366