[1] A.C. Kaya, P. Zaslansky, M. Ipekoglu and C. Fleck, "Strain hardening reduces energy absorption efficiency of austenitic stainless steel foams while porosity does not", Material and Design, vol. 143, pp. 297–308, (2018).
https://doi.org/10.1016/j.matdes.2018.02.009
[2] I. Mutlu, E. Oktay, "Influence of fluoride content of artificial saliva on metal release from 17-4 PH stainless steel foam for dental implant applications, Journal of Materials Science & Technology, vol. 29, pp. 582–588, (2013).
https://doi.org/10.1016/j.jmst.2013.03.006
[3] C. Mapelli, D. Mombelli, A. Gruttadauria, S. Barella and E.M. Castrodeza, "Performance of stainless steel foams produced by infiltration casting techniques", Journal of Materials Processing Technology, vol. 213, pp. 1846–1854, (2013). https://doi.org/10.1016/j.jmatprotec.2013.05.010
[4] X. Jian, C. Hao, Q. Guibao, Y. Yang and L. Xuewei, "Investigation on relationship between porosity and spacer content of titanium foams", Materials & Design, Vol. 88, pp. 132–137, (2015).
https://doi.org/10.1016/j.matdes.2015.08.125
[5] S-f Fan, T. Zhang, K. Yu, H-j Fang, H-q Xiong, Y-l Dai, et al., "Compressive properties and energy absorption characteristics of open-cell nickel foams", Transactions of Nonferrous Metals Society of China, vol. pp. 27, 117–124, (2017). https://doi.org/10.1016/S1003-6326(17)60013-X
[6] N. Kurgan, "Effects of sintering atmosphere on microstructure and mechanical property of sintered powder metallurgy 316L stainless steel", Materials & Design, vol. 52, pp. 995–998, (2013). https://doi.org/10.1016/j.matdes.2013.06.035
[7] X.-Y. Zhou, J. Li, B. Long, D.-W. Huo, "The oxidation resistance performance of stainless steel foam with 3D open-celled network structure at high temperature", Materials Science and Engineering: A, vol. 435–436, pp. 40–45, (2006). https://doi.org/10.1016/j.msea.2006.07.145
[8] H. Wang, X.Y. Zhou and B. Long, "Fabrication of stainless steel foams using polymeric sponge impregnation technology", Advanced Materials Research ,Vol. 1035, pp. 219–224, (2014).
https://doi.org/10.4028/www.scientific.net/AMR.1035.219
[9] N.I. Mad Rosip, S. Ahmad, K.R. Jamaludin and F. Mat Noor, "Morphological analysis of SS316L foam produced by using slurry method", Advanced Materials Research, vol. 1087, pp. 68–72, (2015).
https://doi.org/10.4028/www.scientific.net/AMR.1087.68
[10] C. Yan, L. Hao, A. Hussein, P. Young and D. Raymont, "Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting", Materials & Design, vol. 55, pp. 533–541, (2014). https://doi.org/10.1016/j.matdes.2013.10.027
[11] K. Essa, P. Jamshidi, J. Zou, M.M. Attallah, H. Hassanin, "Porosity control in 316L stainless steel using cold and hot isostatic pressing", Materials & Design, vol. 138, pp. 21–29, (2018). https://doi.org/10.1016/j.matdes.2017.10.025
[12] D.P. Mondal, H. Jain, S. Das and A.K. Jha, "Stainless steel foams made through powder metallurgy route using NH4HCO3 as space holder", Materials & Design, vol. 88, pp. 430–437, (2015).
https://doi.org/10.1016/j.matdes.2015.09.020
[13] A. Mansourighasri, N. Muhamad and A.B. Sulong, "Processing titanium foams using tapioca starch as a space holder, J. Mater. Process", Journal of Materials Processing Technology, vol. 212, pp. 83–89, (2012).
https://doi.org/10.1016/j.jmatprotec.2011.08.008
[14] J. Jakubowicz, G. Adamek, K. Pałka and D. Andrzejewski, "Micro-CT analysis and mechanical properties of Ti spherical and polyhedral void composites made with saccharose as a space holder material", Materials Characterization, vol. 100, 13–20, (2015). https://doi.org/10.1016/j.matchar.2014.12.006
[15] T. Aydoğmuş, E.T. Bor and Ş. Bor, "Phase transformation behavior of porous TiNi alloys produced by powder metallurgy using magnesium as a space holder", Metallurgical and Materials Transactions A, Vol. 42, 2547–2555, (2011). https://doi.org/10.1007/s11661-011-0714-z
[16] S.F. Aida, M.N. Hijrah, A.H. Amirah, H. Zuhailawati and A.S. Anasyida, "Effect of NaCl as a space holder in producing open cell A356 aluminum foam by gravity die casting process", Procedia Chemistry, vol. 19, pp. 234–240, (2016). https://doi.org/10.1016/j.proche.2016.03.099
[17] H. Bafti, A. Habibolahzadeh, "Compressive properties of aluminum foam produced by powder-Carbamide spacer route", Materials & Design, vol. 52, pp. 404–411, (2013). https://doi.org/10.1016/j.matdes.2013.05.043
[18] F. Mat Noor, M.I.M. Zain, K.R. Jamaludin, R. Hussin, Z. Kamdi, A. Ismail, et al., "Potassium bromide as space holder for titanium foam preparation", Applied Mechanics and Materials, Vol. 465–466, pp. 922–926, (2014).
[19] M.F. Mahammad Rafter, S. Ahmad R. Ibrahim, "The effect of different composition of stainless steel (SS316L) foam via space holder method", Advanced Materials Research, vol. 1133, pp. 310–313, (2016). https://doi.org/10.4028/www.scientific.net/AMR.1133.310
[20] Z. Abdullah, S. Ahmad and M. Ramli, "The impact of composition and sintering temperature for stainless steel foams (SS316L) fabricated by space holder method with urea as space holder", Materials Science Forum, vol. 888, pp. 413–417, (2017). https://doi.org/10.4028/www.scientific.net/MSF.888.413
[21] N. Bekoz, E. Oktay, "Effects of carbamide shape and content on processing and properties of steel foams", Journal of Materials Processing Technology. Vol. 212, pp. 2109–2116, (2012). https://doi.org/10.1016/j.jmatprotec.2012.05.015
[22] M. Mirzaei, M.H. Paydar, "A novel process for manufacturing porous 316L stainless steel with uniform pore distribution", Materials & Design, vol.121, pp. 442–449, (2017). https://doi.org/10.1016/j.matdes.2017.02.069
[23] H.O. Gulsoy, R.M. German, "Sintered foams from precipitation hardened stainless steel powder", Powder Metallurgy, vol. 51, pp. 350–353, (2008). https://doi.org/10.1179/174329008X286703
[24] I. Mutlu, E. Oktay, "Characterization of 17-4 PH stainless steel foam for biomedical applications in simulated body fluid and artificial saliva environments", Materials Science and Engineering: C, vol. 33, pp.1125–1131, (2013). https://doi.org/10.1016/j.msec.2012.12.004
[25] H. Sazegaran, M. Fazeli, M. Ganjeh and H. Nasiri, "Effect of Molybdenum Addition on Microstructural and Mechanical Characterization of Highly Porous Steels", Metals and Materials International, vol. 27, pp. 5228-5238 (2020).
[26] H. Sazegaran, S. M. Moosavi Nejad, "Cell Morphology, Porosity, Microstructure, and Mechanical Properties of Porous Fe-C-P Alloys", International Journal of Minerals, Metallurgy and Materials, vol. 28, pp. 257-265 (2021).
https://doi.org/10.1007/s12613-020-1995-2
[27] O. Smorygo, A. Marukovich, V. Mikutski, A.A. Gokhale, G.J. Reddy and J.V. Kumar, "High-porosity titanium foams by powder coated space holder compaction method", Mater. Lett. , Vol.83, pp.17–19, (2012).
https://doi.org/10.1016/j.matlet.2012.05.082
[28] G.K.G. Shailendra Joshi, Mohit Sharma, Telang Amit, Taru Mahra, "Synthesis & characterization of stainless steel foam via powder metallurgy taking acicular urea as space holder", Material Science Research India 12, 43–49, (2015). http://dx.doi.org/10.13005/msri/120108
[29] H. Sazegaran, M. Hojati, "Effects of Copper Content on Microstructure and Mechanical Properties of Open Cell Steel Foams", International Journal of Minerals, Metallurgy and Materials , vol. 26, pp. 588-594 (2019).
https://doi.org/10.1007/s12613-019-1767-z
[30] H. Sazegaran, A. Feizi and M. Hijati, "Effect of Cr Contents on the Porosity Percentage, Microstructure, and Mechanical Properties of Steel Foams Manufactured by Powder Metallurgy", Transactions of the Indian Institute of Metals, vol. 72, pp. 2819-2826 (2019). https://doi.org/10.1007/s12666-019-01758-1
[31] H. Sazegaran, "Investigation on Production Parameters of Steel Foam Manufactured Through Powder Metallurgical Space Holder Technique", Metals and Materials International, vol. 27, pp. 3371-3384, (2021). https://doi.org/10.1007/s12540-020-00659-z
[32] Hamid Sagsagaran, Ali Mohammad Naserian Nik, Mohammad Reza Akbari, Ali Akbari Nejad Voor, "Evaluation of compressive behavior of steel foams produced by powder metallurgy method", Journal of Metallurgical and Materials Engineering, Vol. 32, Number 1, pp.45-56 ( 2019). (In Persian).
https://doi.org/10.22067/jmme.2024.83785.1120
[33] T. Kalpakoglou, S. Yiatros, "Metal foams: A review for mechanical properties under tensile and shear stress", Frontiers in Materials, vol. 9, pp. 1-18 (2022). https://doi.org/10.3389/fmats.2022.998673
[34] M. Su, Q. Zhou, H. Wang, "Mechanical properties and constitutive models of foamed steels under monotonic and cyclic loading", Construction and Building Materials, vol. 231, pp. 116959 (2020).
https://doi.org/10.1016/j.conbuildmat.2019.116959