- Adams, M.L., Lombi, E., Zhao, F.J., & McGrath, S.P. (2002). Evidence of low selenium concentrations in UK bread‐making wheat grain. Journal of the Science of Food and Agriculture, 82(10), 1160-1165. https://doi.org/10.1002/jsfa.1167
- Ahamadabadi, M., Saeidi, M., Rahdar, S., Narooie, M.R., Salimi, A., Alipour, V., Biglari, H. (2016). Amount of baking soda and salt in the bread baked in city of zabol. Iioab Journal, 7, 518-522.
- Arslan, F. N., Akin, G., Karuk Elmas, Ş. N., Üner, B., Yilmaz, I., Janssen, H.-G., & Kenar, A. (2020). FT-IR spectroscopy with chemometrics for rapid detection of wheat flour adulteration with barley flour. Journal of Consumer Protection and Food Safety, 15, 245-261. https://doi.org/10.1007/s00003-019-01267-9
- Asgari, G., SeidMohammadi, A., Faradmal, J., Moradi, M.J., & Yari, K. (2018). The study of Blankit concentration as an unauthorized additive in hamadan bakeries and risk assessment of food consumption. Pajouhan Scientific Journal, 16(4), 21-27.
- Ballabio, D., & Todeschini, R. (2009). Multivariate classification for qualitative analysis Infrared spectroscopy for food quality analysis and control (pp. 83-104): Elsevier. https://doi.org/10.1016/B978-0-12-374136-3.00004-3
- Barak, P. (1995). Smoothing and differentiation by an adaptive-degree polynomial filter. Analytical Chemistry, 67(17), 2758-2762. https://doi.org/10.1021/ac00113a006
- Boysworth, M., & Booksh, K. (2008). Aspects of multivariate calibration applied to near-infrared spectroscopy. PRACTICAL SPECTROSCOPY SERIES, 35, 207.
- Chandrasekaran, I., Panigrahi, S. S., Ravikanth, L., & Singh, C. B. (2019). Potential of near-infrared (NIR) spectroscopy and hyperspectral imaging for quality and safety assessment of fruits: An overview. Food Analytical Methods, 12, 2438-2458. https://doi.org/10.1007/s12161-019-01609-1
- Che, W., Sun, L., Zhang, Q., Zhang, D., Ye, D., Tan, W., Dai, C. (2017). Application of visible/near‐infrared spectroscopy in the prediction of azodicarbonamide in wheat flour. Journal of Food Science, 82(10), 2516-2525. https://doi.org/10.1111/1750-3841.13859
- Christy, A.A., & Kvalheim, O.M. (2007). Latent-variable analysis of multivariate data in infrared spectrometry. Near-infrared Spectroscopy in Food Science and Technology, 145-162. https://doi.org/10.1002/0470047704
- de Carvalho, L.M., & Schwedt, G. (2005). Sulfur speciation by capillary zone electrophoresis: Determination of dithionite and its decomposition products sulfite, sulfate and thiosulfate in commercial bleaching agents. Journal of Chromatography A, 1099(1-2), 185-190. https://doi.org/10.1016/j.chroma.2005.08.084
- De Girolamo, A., Cervellieri, S., Mancini, E., Pascale, M., Logrieco, A. F., & Lippolis, V. (2020). Rapid authentication of 100% italian durum wheat pasta by FT-NIR spectroscopy combined with chemometric tools. Foods, 9(11), 1551. https://doi.org/10.3390/foods9111551
- Dhanoa, M., Lister, S., Sanderson, R., & Barnes, R. (1994). The link between multiplicative scatter correction (MSC) and standard normal variate (SNV) transformations of NIR spectra. Journal of Near Infrared Spectroscopy, 2(1), 43-47. https://doi.org/10.1255/jnirs.30
- Fletcher, T. (2009). Support vector machines explained. Tutorial paper, 1-19.
- Fodor, I.K. (2002). A survey of dimension reduction techniques. Retrieved from.
- GhR, J. K., Yunesian, M., Vaezi, F., Nabizadeh, R., & GhA, P. (2006). A survey on baking Soda elimination from Iranian flat breads in bakeries of Islamshahr city in 2005. Research Journal School Health, Yazd, 1(2), 21-31.
- Govaert, F., Temmerman, E., & Kiekens, P. (1999). Development of voltammetric sensors for the determination of sodium dithionite and indanthrene/indigo dyes in alkaline solutions. Analytica chimica acta, 385(1-3), 307-314. https://doi.org/10.1016/S0003-2670(98)00591-1
- Guzmán-Ortiz, F. A., Hernández-Sánchez, H., Yee-Madeira, H., San Martín-Martínez, E., Robles-Ramírez, M.D.C., Rojas-López, M., Mora-Escobedo, R. (2015). Physico-chemical, nutritional and infrared spectroscopy evaluation of an optimized soybean/corn flour extrudate. Journal of food science and technology, 52, 4066-4077. https://doi.org/10.1007/s13197-014-1485-5
- Jolliffe, I. T. (1986). Principal Component Analysis and Factor Analysis. In I. T. Jolliffe (Ed.), Principal Component Analysis (pp. 115-128). New York, NY: Springer New York.
- Kamruzzaman, M., Barbin, D., ElMasry, G., Sun, D.-W., & Allen, P. (2012). Potential of hyperspectral imaging and pattern recognition for categorization and authentication of red meat. Innovative Food Science & Emerging Technologies, 16, 316-325. https://doi.org/10.1016/j.ifset. 2012.07.007
- Karami, M., Alikord, M., Mokhtari, Z., Sadighara, P., & Jahed-Khaniki, G. (2021). Sodium Hydrosulfite (Blankit) in Iranian food as a threat to human health: a review. Journal of Food Safety and Hygiene. https://doi.org/10.18502/jfsh.v7i2.8398
- Kazemi, A., Mahmoudi, A., & Khojastehnazhand, M. (2023). Detection of sodium hydrosulfite adulteration in wheat flour by FT-MIR spectroscopy. Journal of Food Measurement and Characterization, 17(2), 1932-1939. https://doi.org/10.1007/s11694-022-01763-x
- Kazemi, A., Mahmoudi, A., Veladi, H., Javanmard, A., & Khojastehnazhand, M. (2022). Rapid identification and quantification of intramuscular fat adulteration in lamb meat with VIS–NIR spectroscopy and chemometrics methods. Journal of Food Measurement and Characterization, 16(3), 2400-2410. https://doi.org/10.1007/s11694-022-01352-y
- Lavigne-Delcroix, A., Tusseau, D., & Proix, M. (1996). Validation of a chromatographic chemiluminescence detector. Sciences des Aliments, 16, 267-280.
- Lohumi, S., Lee, S., Lee, H., & Cho, B.-K. (2015). A review of vibrational spectroscopic techniques for the detection of food authenticity and adulteration. Trends in Food Science & Technology, 46(1), 85-98. https://doi.org/10.1016/j.tifs.2015.08.003
- López-Maestresalas, A., Insausti, K., Jarén, C., Pérez-Roncal, C., Urrutia, O., Beriain, M.J., & Arazuri, S. (2019). Detection of minced lamb and beef fraud using NIR spectroscopy. Food Control, 98, 465-473. https://doi.org/10.1016/j.foodcont.2018.12.003
- Malakootian, M., & Dowlatshahi, S. (2005). The quality of the manufactured bread and hygienic conditions of bakeries. Journal of Environmental Health Science & Engineering, 2(2), 72-78.
- Martins, F.C., Sentanin, M.A., & De Souza, D. (2019). Analytical methods in food additives determination: Compounds with functional applications. Food Chemistry, 272, 732-750. https://doi.org/10.1016/j.foodchem.2018.08.060
- Martins, M.S., Nascimento, M.H., Barbosa, L.L., Campos, L.C., Singh, M.N., Martin, F.L., Barauna, V. G. (2022). Detection and quantification using ATR-FTIR spectroscopy of whey protein concentrate adulteration with wheat flour. LWT, 172, 114161. https://doi.org/10.1016/ j.lwt.2022.114161
- Mishra, P., Herrero-Langreo, A., Barreiro, P., Roger, J.M., Diezma, B., Gorretta, N., & Lleó, L. (2015). Detection and quantification of peanut traces in wheat flour by near infrared hyperspectral imaging spectroscopy using principal-component analysis. Journal of Near Infrared Spectroscopy, 23(1), 15-22.
- Mohamed, M.Y., Solihin, M.I., Astuti, W., Ang, C.K., & Zailah, W. (2019). Food powders classification using handheld near-infrared spectroscopy and support vector machine. Paper presented at the Journal of Physics: Conference Series. https://doi.org/10.1088/1742-6596/1367/1/012029
- Monnier, G., & Wiliams, S. (1972). Determination of sulfur dioxide. (AOAC Official Method 990.28). Analyst, 95, 119.
- Pallone, J.A.L., dos Santos Caramês, E.T., & Alamar, P.D. (2018). Green analytical chemistry applied in food analysis: alternative techniques. Current Opinion in Food Science, 22, 115-121. https://doi.org/10.1016/j.cofs.2018.01.009
- Pebriana, R.B., Rohman, A., Lukitaningsih, E., & Sudjadi. (2017). Development of FTIR spectroscopy in combination with chemometrics for analysis of rat meat in beef sausage employing three lipid extraction systems. International Journal of Food Properties, 20(sup2), 1995-2005.
- Peng, L., Cheng, H., Wang, L.-J., & Zhu, D. (2020). Comparisons of the prediction results of soil properties based on fuzzy c-means clustering and expert knowledge from laboratory Visible–Near-Infrared reflectance spectroscopy data. Canadian Journal of Soil Science, 101(1), 33-44. https://doi.org/10.1139/cjss-2020-0025
- Pisoschi, A.M., Pop, A., Gajaila, I., Iordache, F., Dobre, R., Cazimir, I., & Serban, A.I. (2020). Analytical methods applied to the assay of sulfur-containing preserving agents. Microchemical Journal, 155, 104681. https://doi.org/10.1016/j.microc.2020.104681
- Rethmeier, J., Rabenstein, A., Langer, M., & Fischer, U. (1997). Detection of traces of oxidized and reduced sulfur compounds in small samples by combination of different high-performance liquid chromatography methods. Journal of Chromatography A, 760(2), 295-302. https://doi.org/10.1016/S0021-9673(96)00809-6
- Reza, T., Aktar, S., Al Amin, H., Rahman, M., Arefin, A., Mohanto, N.C., Nikkon, F. (2014). In vivo analysis of toxic effect of hydrose used in food preparations in Bangladesh. Asian Pacific Journal of Tropical Biomedicine, 4(11), 884-889. https://doi.org/10.12980/APJTB. 4.201414B366
- Rinnan, Å., Nørgaard, L., van den Berg, F., Thygesen, J., Bro, R., & Engelsen, S.B. (2009). Data pre-processing. Infrared spectroscopy for food quality analysis and control, 29-50.
- Roa, D.F., Santagapita, P.R., Buera, M.P., & Tolaba, M.P. (2014). Ball milling of Amaranth starch-enriched fraction. Changes on particle size, starch crystallinity, and functionality as a function of milling energy. Food and Bioprocess Technology, 7, 2723-2731. https://doi.org/10.1007/s11947-014-1283-0
- Rodríguez, S.D., Rolandelli, G., & Buera, M.P. (2019). Detection of quinoa flour adulteration by means of FT-MIR spectroscopy combined with chemometric methods. Food Chemistry, 274, 392-401. https://doi.org/10.1016/j.foodchem.2018.08.140
- Rohman, A., & Salamah, N. (2018). The employment of spectroscopic techniques coupled with chemometrics for authentication analysis of halal pharmaceuticals. Journal of Applied Pharmaceutical Science, 8(10), 063-068. https://doi.org/10.7324/JAPS.2018.81009
- Sabeghi, M. (2004). Interview with Dean of Faculity of flour and Bread. Journal of Iran dough-baked, 3, 5-6.
- Savitzky, A., & Golay, M.J. (1964). Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry, 36(8), 1627-1639. https://doi.org/10.1021/ ac60214a047
- Shewry, P. (2009). The HEALTHGRAIN programme opens new opportunities for improving wheat for nutrition and health: Wiley Online Library.
- Shewry, P.R., Powers, S., Field, J.M., Fido, R.J., Jones, H.D., Arnold, G.M., Barro, F. (2006). Comparative field performance over 3 years and two sites of transgenic wheat lines expressing HMW subunit transgenes. Theoretical and Applied Genetics, 113, 128-136. https://doi.org/10.1007/s00122-006-0279-1
- Sikorska, E., Khmelinskii, I., & Sikorski, M. (2014). Vibrational and electronic spectroscopy and chemometrics in analysis of edible oils. Methods in Food Analysis; Cruz, RMS, Khmelinskii, I., Vieira, M., Eds, 201-234.
- Topping, D. (2007). Cereal complex carbohydrates and their contribution to human health. Journal of Cereal Science, 46(3), 220-229. https://doi.org/10.1016/j.jcs.2007.06.004
- Vapnik, V. (1999). The nature of statistical learning theory: Springer science & business media. https://doi.org/10.1109/72.788640
- Varmuza, K., & Filzmoser, P. (2016). Introduction to multivariate statistical analysis in chemometrics: CRC press. https://doi.org/10.1201/9781420059496
- Yuan, W., Xiang, B., Yu, L., & Xu, J. (2011). A non-invasive method for screening sodium hydroxymethanesulfonate in wheat flour by near-infrared spectroscopy. Food Analytical Methods, 4, 550-558. https://doi.org/10.1007/s12161-011-9198-0
- Zeaiter, M., Roger, J.-M., & Bellon-Maurel, V. (2005). Robustness of models developed by multivariate calibration. Part II: The influence of pre-processing methods. TrAC Trends in Analytical Chemistry, 24(5), 437-445. https://doi.org/10.1016/j.trac.2004.11.023
|