[1] Abo-Hammour, Z.S., Asasfeh, A.G., Al-Smadi A.M. and Alsmadi, O.M., A novel continuous genetic algorithm for the solution of optimal control problems, Optim. Control Appl. Methods, 32(4) (2011), 414–432.
[2] Alzahrani, E.O. and Khan, M.A., Modeling the dynamics of Hepatitis E with optimal control, Chaos Solit. Fractals, 116 (2018), 287–301.
[3] Babaie-Kafaki, S., Ghanbari, R. and Mahdavi-Amiri, N., Two effective hybrid metaheuristic algorithms for minimization of multimodal func-tions, Int. J. Comput. Math. 88(11) (2011), 2415–2428.
[4] Betts, J.T., Practical methods for optimal control and estimation using nonlinear programming, Society for Industrial and Applied Mathematics, 2010.
[5] Borzabadi, A.H. and Mehne, H.H., Ant colony optimization for optimal control problems, Journal of Information and Computing Science, 4(4) (2009), 259–264.
[6] Chachuat, B., Nonlinear and dynamic optimization: From theory to practice, Automatic Control Laboratory, 2007.
[7] Costa, W.E., Goldbarg, M.C. and Goldbarg, E.G., New VNS heuristic for total flowtime flowshop scheduling problem, Expert Syst. Appl. 39(2) (2012), 8149–8161.
[8] Dadebo, S.A. and Mcauley, K.B., Dynamic optimization of constrained chemical engineering problems using dynamic programming, Comput. Chem. Eng. 19(5) (1995), 513–525.
[9] Effati, S. and Nik, H.S., Solving a class of linear and non-linear opti-mal control problems by homotopy perturbation method, IMA J. Math. Control Inf. 28(4) (2011), 539–553.
[10] Fabien, B.C., Some tools for the direct solution of optimal control prob-lems, Adv. Eng. Softw. 29(1) (1998), 45–61.
[11] Fard, O.S. and Borzabadi, A.H., Optimal Control Problem, Quasi-Assignment Problem and Genetic Algorithm, World Academy of Science, Engineering and Technology, 33 (2007), 46–48.
[12] Gaing, Z.L., A particle swarm optimization approach for optimum design of PID controller in AVR system, IEEE Trans. Energy Convers. 19(2) (2004), 384–391.
[13] Ghomanjani, F., Farahi, M.H. and Gachpazan, M., Bézier control points method to solve constrained quadratic optimal control of time varying linear systems, Comput. Appl. Math. 31(3) (2012), 433–456.
[14] Hansen, P. and Mladenović, N., Developments of Variable Neighborhood Search, Essays and Surveys in Metaheuristics, Springer, 2002.
[15] Hansen, P., Mladenović, N., Moreno, P. and érez, J.A., Variable neigh-bourhood search: methods and applications, 4OR, 6(4) (2008), 319–360.
[16] Hansen, P., Mladenović, N. and Uros̆ević, D., Variable neighborhood search for the maximum clique, Discret. Appl. Math. 145 (2004), 117–125.
[17] Ilić, A., Uros̆evic, D., Brimberg, J. and Mladenović, N., A general vari-able neighborhood search for solving the uncapacitated single allocation p-hub median problem, Eur. J. Oper. Res. 206(2) (2007), 289–300.
[18] Lazutkin, E., Geletu, A., Hopfgarten, S. and Li, P., An Analytical Hes-sian and Parallel-Computing Approach for Efficient Dynamic Optimiza-tion Based on Control-Variable Correlation Analysis, Ind. Eng. Chem. Res. 54(48) (2015), 12086–12095.
[19] Mehne, H.H., Evaluation of parallelism in ant colony optimization method for numerical solution of optimal control problems, J. Electr. Eng. Electron. Control Comput. Sci. Science, 1(2) (2015), 15–20.
[20] Mehne, H.H. and Mirjalili, S., A parallel numerical method for solving optimal control problems based on whale optimization algorithm, Knowl.-Based Syst. 151 (2018), 114–123.
[21] Michalewicz, Z., Krawczyk, J.B. and Kazemi, M., Genetic algorithms and optimal control problems, 29th IEEE Conference on Decision and Control, 3 (1990), 1664–1666.
[22] Modares, H. and Naghibi Sistani, M.B., Solving nonlinear optimal con-trol problems using a hybrid IPSO–SQP algorithm, Eng. Appl. Artif. Intell. 24(3) (2011), 476–484.
[23] Nezhadhosein, S., Heydari, A. and Ghanbari, R., A Modified Hybrid Ge-netic Algorithm for Solving Nonlinear Optimal Control Problems, Math. Probl. Eng. 2015 (2015), 1–21.
[24] Nezhadhosein, S., Heydari, A. and Ghanbari, R., Integrating Differential Evolution Algorithm with Modified Hybrid GA for Solving Nonlinear Optimal Control Problems, Iran. J. Math. Sci. Inform. 12(1) (2017), 47–67.
[25] Nezhadhosein, S., Ghanbari, R. and Ghorbani-Moghadam, K., Article Solving a Class of Nonlinear Optimal Control Problems Using Haar Wavelets and Hybrid GA, Control and Optim. Appl. Math. 8 (2023), 1–17.
[26] Oliveira, F.A., de S´a, E.M., d. Souza, S. R. and Souza, M.J.F., ILS-based algorithms for the profit maximizing uncapacitated hub network design problem with multiple allocation, Comput. Oper. Res. 157 (2023), 0305–0548.
[27] Ozkan, Y., Aydin, Y.O., Saranli, A., Yazicioglu, Y., Saranli, U. and Leblebicioğlu, K., Optimal control of a half-circular compliant legged monopod, Control Eng. 33 (2014), 10–21.
[28] Rigatos, G., Abbaszadeh, M., Sari, B., Siano, P., Cuccurullo, G. and Zouari, F., Nonlinear optimal control for a gas compressor driven by an induction motor, Results Control. Optim. 11(2023) 100226.
[29] Rigatos, G., Siano, P., AL-Numay, M., Abbaszadeh, M. and Sari, B., Nonlinear optimal and multi-loop flatness-based control of induction motor-driven desalination units, Results Control. Optim. 14 ( 2024), 100360.
[30] Roy, T. and Chakraborty, D., Optimal vibration control of smart fiber reinforced composite shell structures using improved genetic algorithm, J. Sound Vib. 319 (2009), 15-40.
[31] Said, S.M. and Nakamura, M., Asynchronous parallel algorithms for strategic hybrid on a mixture gaussin model, International Journal of Innovative Computing, Inf. Control, 10(2) (2014), 459-479.
[32] Salimi, M., Borzabadi, A.H., Mehne, H.H. and Heydari, A., The hub location’s method for solving optimal control problems, Evol. Intell. 14 (2021), 1671-1690.
[33] Shi, X.H., Wan, L.M., Lee, P.H., Yang, X.W., Wang, L.M. and Liang, Y.C., An improved genetic algorithm with variable population-size and a PSO-GA based hybrid evolutionary algorithm, Int. J. Syst. Sci. 3 (2003), 1735-1740.
[34] Sun, F., Du, W., Qi, R., Qian, F. and Zhong, W., A Hybrid Improved Genetic Algorithm and Its Application in Dynamic Optimization Prob-lems of Chemical Processes, Chin. J. Chem. Eng. 21(2) (2013), 144-154.
[35] Tavakolpour, A.R., Mat Darus, I.Z., Tokhi, O. and Mailah, M., Ge-netic algorithm-based identification of transfer function parameters for a rectangular flexible plate system, Eng. Appl. Artif. Intell. 23(8) (2010), 1388-1397.
[36] Van Soest, A.J.K. and Casius, L.J.R.R., it The Merits of a Parallel Genetic Algorithm in Solving Hard Optimization Problems, J. Biomech. Eng.125(1) (2003), 141–146.
[37] Wang, Z. and Ju, G., A parallel genetic algorithm in multi-objective optimization, 2009 Chinese Control and Decision Conference, 3497–3501.
[38] Roberge, V., Tarbouchi, M. and Labonte, G., Comparison of Parallel Genetic Algorithm and Particle Swarm Optimization for Real-Time UAV Path Planning, IEEE Trans. Ind. Inform. 9(1) (2013), 132–141.
[39] Wolf, S. and Merz, P., Evolutionary local search for the super-peer se-lection problem and the p-Hub median problem, Hybrid Metaheuristics, (2007), 1–15.
[40] Wu, X., Lei, B., Zhang, K. and Cheng, M., Hybrid stochastic optimiza-tion method for optimal control problems of chemical processes, Chem. Eng. Res. Des. 126 (2017), 297–310.
[41] Zhang, B., Chen, D. and Zhao, W., Iterative ant-colony algorithm and its application to dynamic optimization of chemical process, Comput. Chem. Eng. 29(10) (2005), 2078–2086.