- Adeogun, A. G., Ganiyu, H. O., Ladokun, L. L., & Ibitoye, B. A. (2020). Evaluation of hydrokinetic energy potentials of selected rivers in Kwara State, Nigeria. Environmental Engineering Research, 25(3), 267-273. https://doi.org/10.4491/eer.2018.028
- Ali, F., Srisuwan, C., Techato, K., Bennui, A., Suepa, T., & Niammuad, D. (2020). Theoretical hydrokinetic power potential assessment of the U-Tapao River Basin using GIS. Energies, 13(7), 1749. https://doi.org/10.3390/en13071749
- Allen, P. M., Arnold, J. C., & Byars, B. W. (1994). Downstream channel geometry for use in planning‐level models 1. JAWRA Journal of the American Water Resources Association, 30(4), 663-671. https://doi.org/10.1111/j.1752-1688.1994.tb03321.x
- Arabkhedri, M., Sedarati, K., & Esmali, A. (2017). The trend of suspended sediment changes of Karaj and Jajroud rivers during recent decades. Watershed Engineering and Management, 9(1), 22-33. https://doi.org/10.22092/ijwmse.2017.108755
- Arman, N. (2006). Calibrating Manning's roughness coefficient in Karaj river reaches and analyzing it with HEC-RAS software University of Tehran. https://noordoc.ir/thesis/19284
- Babaei, L., Jalili, M. H., Aminzadeh, Z., Soleimani, F., & Hazbavi, Z. (2022). Modeling of monthly flow duration curve using nonlinear regression method for un-gauged watersheds of Ardabil Province. Iranian Journal of Rainwater Catchment Systems, 9(4), 1-18. http://jircsa.ir/article-1-439-fa.html
- Bomhof, J. (2014). Estimating flow, hydraulic geometry, and hydrokinetic power at ungauged locations in Canada University of Ottawa. http://hdl.handle.net/10393/30383
- Broad, S., & Corkrey, R. (2011). Estimating annual generation rates of total P and total N for different land uses in Tasmania, Australia. Journal of Environmental Management, 92(6), 1609-1617. https://doi.org/10.1016/j.jenvman.2011.01.023
- Burgan, H. I., & Aksoy, H. (2020). Monthly Flow Duration Curve Model for Ungauged River Basins. Water, 12(2). https://doi.org/10.3390/w12020338
- Chilkoti, V., Bolisetti, T., & Balachandar, R. (2019). Diagnostic evaluation of hydrologic models employing flow duration curve. Journal of Hydrologic Engineering, 24(6), 05019009. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001778
- Da Silva Holanda, P., Blanco, C. J. C., Mesquita, A. L. A., Junior, A. C. P. B., de Figueiredo, N. M., Macêdo, E. N., & Secretan, Y. (2017). Assessment of hydrokinetic energy resources downstream of hydropower plants. Renewable Energy, 101, 1203-1214. https://doi.org/10.1016/j.renene.2016.10.011
- dos Santos, I. F. S., Camacho, R. G. R., Tiago Filho, G. L., Botan, A. C. B., & Vinent, B. A. (2019). Energy potential and economic analysis of hydrokinetic turbines implementation in rivers: An approach using numerical predictions (CFD) and experimental data. Renewable Energy, 143, 648-662. https://doi.org/10.1016/j.renene.2019.05.018
- Eshra, N. M., Zobaa, A. F., & Abdel Aleem, S. H. E. (2021). Assessment of mini and micro hydropower potential in Egypt: Multi-criteria analysis. Energy Reports, 7, 81-94. https://doi.org/10.1016/j.egyr.2020.11.165
- Fiedler, K., & Döll, P. (2010). Monthly and daily variations of continental water storage and flows. System Earth via Geodetic-Geophysical Space Techniques, 407-415. https://doi.org/10.1007/978-3-642-10228-8_35
- Gerlinger, K., & Demuth, N. (2000). Operational flood forecasting for the Moselle River Basin. Proceedings of the European Conference on Advances in Flood Research, Potsdam-Institut für Klimafolgenforschung, Potsdam, Germany.
- Ghaforpur-Anbaran, P., Ahmadabadi, A., Ghanavati, E., & Yasi, M. (2023). Hydro-Morphological Analysis of Karaj River in the Urban Area from Beylqan to the Railway Bridge. Geography and Environmental Sustainability, 13(1), 21-39. https://doi.org/10.22126/ges.2022.8026.2552
- Henrique da Costa Oliveira, C., de Lourdes Cavalcanti Barros, M., Alves Castelo Branco, D., Soria, R., & Cesar Colonna Rosman, P. (2021). Evaluation of the hydraulic potential with hydrokinetic turbines for isolated systems in locations of the Amazon region. Sustainable Energy Technologies and Assessments, 45, 101079. https://doi.org/10.1016/j.seta.2021.101079
- Hu, Z., & Du, X. (2012). Reliability analysis for hydrokinetic turbine blades. Renewable Energy, 48, 251-262. https://doi.org/10.1016/j.renene.2012.05.002
- Hydrometry Stations Data. (2023). Iranian Water Resources Management Company. Retrieved 5/10/2023 from stu.wrm.ir
- Ibrahim, W., Mohamed, M., & Ismail, R. (2021). The potential of hydrokinetic energy harnessing in Pahang river basin. Proceedings of the 12th National Technical Seminar on Unmanned System Technology 2020: NUSYS’20, 1163-1176. https://doi.org/10.1007/978-981-16-2406-3_85
- Ibrahim, W., Mohamed, M., Ismail, R., Leung, P., Xing, W., & Shah, A. (2021). Hydrokinetic energy harnessing technologies: A review. Energy Reports, 7. https://doi.org/10.1016/j.egyr.2021.04.003
- Jenkinson, R. (2010). Assessment of Canada’s hydrokinetic power potential.
- John, B., & Varghese, J. (2021a). Optimum sizing of hydrokinetic turbine integrated photovoltaic-battery system incorporating uncertainties of resources. International Journal of Green Energy, 18(6), 645-655. https://doi.org/10.1080/15435075.2021.1875472
- John, B., & Varghese, J. (2021b). Sizing and techno-economic analysis of hydrokinetic turbine based standalone hybrid energy systems. Energy, 221, 119717. https://doi.org/10.1016/j.energy.2020.119717
- Kallio, M., Guillaume, J. H., Virkki, V., Kummu, M., & Virrantaus, K. (2021). Hydrostreamer v1. 0–improved streamflow predictions for local applications from an ensemble of downscaled global runoff products. Geoscientific Model Development, 14(8), 5155-5181. https://doi.org/10.5194/gmd-14-5155-2021
- Karam, A., Safari, A., & Hajehforosh Nia, S. (2015). Analysis of flood and fluvial processes in the occurrence of environmental hazards (Case Study: Arange Basin, Karaj River). Journal of Spatial Analysis Environmental Hazards, 2(2), 53-68. https://doi.org/10.18869/acadpub.jsaeh.2.2.53
- Karimi, S., Pourebrahim, S., Salajegheh, A., Malekian, A., Strauch, M., Volk, M., & Witing, F. (2021). Environmental flow requirements of Karaj River’s sub-watersheds using Flow Duration Curve and Indicators of Hydrological Alteration. Journal of Pasture and Watershed Management, 74(2), 393-405. https://doi.org/10.22059/jrwm.2021.270394.1322
- Keihani, A., Akhoondali, A., & Fathian, H. (2021). Multivariate Frequency Analysis of Peak Discharge and Suspended and Bed Sediment Load in Karaj Basin. Iran Water Resources Management, 17(1), 47-67.
- Khaliq, M., & Cousineau, J. (2020). Assessment of Canada’s Hydrokinetic Resources: A Review of Hydrologic Considerations. National Research Council Canada= Conseil national de recherches Canada.
- Khani, M. S., Shahsavani, Y., Mehraein, M., & Kisi, O. (2023). Performance evaluation of the savonius hydrokinetic turbine using soft computing techniques. Renewable Energy, 215, 118906. https://doi.org/10.1016/j.renene.2023.118906
- Khatooni, K., Hooshyaripor, F., MalekMohammadi, B., & Noori, R. (2023). A combined qualitative–quantitative fuzzy method for urban flood resilience assessment in Karaj City, Iran. Scientific Reports, 13(1), 241. https://doi.org/10.1038/s41598-023-27377-x
- Khosravi, K., Sheikh Khozani, Z., & Cooper, J. R. (2021). Predicting stable gravel-bed river hydraulic geometry: A test of novel, advanced, hybrid data mining algorithms. Environmental Modelling & Software, 144, 105165. https://doi.org/10.1016/j.envsoft.2021.105165
- Killingtveit, Å. (2019). 8- Hydropower. In T. M. Letcher (Ed.), Managing Global Warming (pp. 265-315). Academic Press. https://doi.org/10.1016/B978-0-12-814104-5.00008-9
- Killingtveit, Å. (2022). Hydropower Resources Assessment—Potential for Further Development. https://doi.org/10.1016/B978-0-12-819727-1.00069-8
- Kirby, K., Ferguson, S., Rennie, C., Nistor, I., & Cousineau, J. (2022). Assessments of available riverine hydrokinetic energy: a review. Canadian Journal of Civil Engineering, 49(6), 839-854. https://doi.org/10.1139/cjce-2021-0178
- Kirke, B. (2019). Hydrokinetic and ultra-low head turbines in rivers: A reality check. Energy for Sustainable Development, 52, 1-10. https://doi.org/10.1016/j.esd.2019.06.002
- Kirke, B. (2020). Hydrokinetic turbines for moderate sized rivers. Energy for Sustainable Development, 58, 182-195. https://doi.org/10.1016/j.esd.2020.08.003
- Langat, P. K., Kumar, L., & Koech, R. (2019). Identification of the most suitable probability distribution models for maximum, minimum, and mean streamflow. Water, 11(4), 734. https://doi.org/10.3390/w11040734
- Lata-García, J., Jurado, F., Fernández-Ramírez, L. M., & Sánchez-Sainz, H. (2018). Optimal hydrokinetic turbine location and techno-economic analysis of a hybrid system based on photovoltaic/hydrokinetic/hydrogen/battery. Energy, 159, 611-620. https://doi.org/10.1016/j.energy.2018.06.183
- Leopold, L. B., & Maddock Jr, T. (1953). The hydraulic geometry of stream channels and some physiographic implications [Report](252). (Professional Paper, Issue. U. S. G. P. Office. http://pubs.er.usgs.gov/publication/pp252
- Luan, J., Liu, D., Lin, M., & Huang, Q. (2021). The construction of the flow duration curve and the regionalization parameters analysis in the northwest of China. Journal of Water and Climate Change, 12(6), 2639-2653. https://doi.org/10.2166/wcc.2021.324
- Nhabetse, T., Cuamba, B., Kucel, S., & Mungoi, N. (2017). Assessment of hydrokinetic potential in the Umbeluzi Basin, Mozambique. Proceedings of the ISES Solar World Congress 2017 with IEA SHC Solar Heating and Cooling Conference, Abu Dhabi, UAE.
- Niebuhr, C. M., van Dijk, M., Neary, V. S., & Bhagwan, J. N. (2019). A review of hydrokinetic turbines and enhancement techniques for canal installations: Technology, applicability and potential. Renewable and Sustainable Energy Reviews, 113. https://doi.org/10.1016/j.rser.2019.06.047
- Pugliese, A., Farmer, W. H., Castellarin, A., Archfield, S. A., & Vogel, R. M. (2016). Regional flow duration curves: Geostatistical techniques versus multivariate regression. Advances in Water Resources, 96, 11-22. https://doi.org/10.1016/j.advwatres.2016.06.008
- Punys, P., Adamonyte, I., Kvaraciejus, A., Martinaitis, E., Vyciene, G., & Kasiulis, E. (2015). Riverine hydrokinetic resource assessment. A case study of a lowland river in Lithuania. Renewable and Sustainable Energy Reviews, 50, 643-652. https://doi.org/10.1016/j.rser.2015.04.155
- Ridgill, M., Lewis, M. J., Robins, P. E., Patil, S. D., & Neill, S. P. (2022). Hydrokinetic energy conversion: A global riverine perspective. Journal of Renewable and Sustainable Energy, 14(4), 044501. https://doi.org/10.1063/5.0092215
- Saini, G., Kumar, A., & Saini, R. P. (2021). Assessment of hydrokinetic energy– A case study of eastern Yamuna canal. Materials Today: Proceedings, 46, 5223-5227. https://doi.org/10.1016/j.matpr.2020.08.595
- Saini, G., & Saini, R. P. (2023). Hydrokinetic as an Emerging Technology. Smart Energy and Advancement in Power Technologies, 711-721. https://doi.org/10.1007/978-981-19-4971-5_52
- Samadi, A., & Azizian, A. (2021). Investigation of hydromorphological changes of Karaj River due to the implementation of water resources development and river engineering projects. Journal of Hydraulics, 16(1), 93-110. https://doi.org/10.30482/JHYD.2021.265438.1499
- Saupi, A. F. M., Mailah, N. F., Radzi, M. A. M., Ahmad, S. Z., & Soh, A. C. (2018). Hydrokinetic Energy Assessment in Unregulated River for Hydrokinetic Performance Analysis Studies in East Malaysia. https://doi.org/10.20944/preprints201804.0357.v1
- Schulze, K., Hunger, M., & Döll, P. (2005). Simulating river flow velocity on global scale. Advances in Geosciences, 5, 133-136. https://doi.org/10.5194/adgeo-5-133-2005
- Singh, V. (2022). Handbook of Hydraulic Geometry. Cambridge University Press.
- Sojka, M. (2022). Directions and Extent of Flows Changes in Warta River Basin (Poland) in the Context of the Efficiency of Run-of-River Hydropower Plants and the Perspectives for Their Future Development. Energies, 15(2). https://doi.org/10.3390/en15020439
- Tahershamsi, A., & Imanshoar, F. (2010). Determination of River Regime Equations Based on Stream Power Equation. Journal of Civil and Surveying Engineering, 44(1). https://jcse.ut.ac.ir/article_20753.html
- Tahir, M. U. R., Amin, A., Baig, A. A., Manzoor, S., Haq, A., Asgha, M. A., & Khawaja, W. A. G. (2021). Design and optimization of grid Integrated hybrid on-site energy generation system for rural area in AJK-Pakistan using HOMER software. AIMS Energy, 9(6), 1113-1135. https://doi.org/10.3934/energy.2021051
- Tan, K. W., Kirke, B., & Anyi, M. (2021). Small-scale hydrokinetic turbines for remote community electrification. Energy for Sustainable Development, 63, 41-50. https://doi.org/10.1016/j.esd.2021.05.005
- Tigabu, M. T., Wood, D. H., & Admasu, B. T. (2020). Resource assessment for hydro-kinetic turbines in Ethiopian rivers and irrigation canals. Energy for Sustainable Development, 58, 209-224. https://doi.org/10.1016/j.esd.2020.08.005
- Verzano, K., Bärlund, I., Flörke, M., Lehner, B., Kynast, E., Voß, F., & Alcamo, J. (2012). Modeling variable river flow velocity on continental scale: Current situation and climate change impacts in Europe. Journal of Hydrology, 424, 238-251. https://doi.org/10.1016/j.jhydrol.2012.01.005
- Vogel, R. M., & Fennessey, N. M. (1995). Flow duration curves II: A review of applications in water resources planning 1. JAWRA Journal of the American Water Resources Association, 31(6), 1029-1039. https://doi.org/10.1111/j.1752-1688.1995.tb03419.x
- Wulf, H., Bookhagen, B., & Scherler, D. (2016). Differentiating between rain, snow, and glacier contributions to river discharge in the western Himalaya using remote-sensing data and distributed hydrological modeling. Advances in Water Resources, 88, 152-169. https://doi.org/10.1016/j.advwatres.2015.12.004
- Yadav, P. K., Kumar, A., & Jaiswal, S. (2023). A critical review of technologies for harnessing the power from flowing water using a hydrokinetic turbine to fulfill the energy need. Energy Reports, 9, 2102-2117. https://doi.org/10.1016/j.egyr.2023.01.033
- Zhu, Y., Tao, S., Sun, J., Wang, X., Li, X., Tsang, D. C., Zhu, L., Shen, G., Huang, H., & Cai, C. (2019). Multimedia modeling of the PAH concentration and distribution in the Yangtze River Delta and human health risk assessment. Science of the Total Environment, 647, 962-972. https://doi.org/10.1016/j.scitotenv.2018.08.075
|