- Abidin, S.A.S.Z., Rosli, S.H., Bujang, A., Nordin, R., & Nizar, N.N.A. (2021). Fourier Transform Infrared (FTIR) Spectroscopy for Determination of Offal in Beef Patties. Paper presented at the 2021 IEEE 12th Control and System Graduate Research Colloquium (ICSGRC).
- Achata, E.M., Mousa, M.A., Al-Qurashi, A.D., Ibrahim, O.H., Abo-Elyousr, K.A., Aal, A.M.A., & Kamruzzaman, M. (2023). Multivariate optimization of hyperspectral imaging for adulteration detection of ground beef: Towards the development of generic algorithms to predict adulterated ground beef and for digital sorting. Food Control, 109907. https://doi.org/10.1016/j.foodcont.2023.109907
- Alaiz-Rodriguez, R., & Parnell, A.C. (2020). A machine learning approach for lamb meat quality assessment using FTIR spectra. IEEE Access, 8, 52385-52394. https://doi.org/10.1109/access.2020.2974623
- Bai, Z., Gu, J., Zhu, R., Yao, X., Kang, L., & Ge, J. (2022). Discrimination of minced mutton adulteration based on sized-adaptive online NIRS information and 2D conventional neural network. Foods, 11(19), 2977. https://doi.org/10.3390/foods11192977
- Banerjee, A. (2014). Fourier Transform Infrared Spectroscopy-A Review.
- Barbin, D.F., Badaro, A.T., Honorato, D.C., Ida, E.Y., & Shimokomaki, M. (2020). Identification of turkey meat and processed products using near infrared spectroscopy. Food Control, 107, 106816. https://doi.org/https://doi.org/10.1016/j.foodcont.2019.106816
- Basati, Z., Jamshidi, B., Rasekh, M., & Abbaspour-Gilandeh, Y. (2018). Detection of sunn pest-damaged wheat samples using visible/near-infrared spectroscopy based on pattern recognition. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 203, 308-314. https://doi.org/10.1016/j.saa.2018.05.123
- Bauer, A., Scheier, R., Eberle, T., & Schmidt, H. (2016). Assessment of tenderness of aged bovine gluteus medius muscles using Raman spectroscopy. Meat Science, 115, 27-33. https://doi.org/10.1016/j.meatsci.2015.12.020
- Bi, Y., Yuan, K., Xiao, W., Wu, J., Shi, C., Xia, J., & Zhou, G. (2016). A local pre-processing method for near-infrared spectra, combined with spectral segmentation and standard normal variate transformation. Analytica Chimica Acta, 909, 30-40. https://doi.org/10.1016/j.aca.2016.01.010
- Blanco, M., & Villarroya, I. (2002). NIR spectroscopy: a rapid-response analytical tool. TrAC Trends in Analytical Chemistry, 21(4), 240-250. https://doi.org/10.1016/S0165-9936(02)00404-1
- Boyacı, I.H., Temiz, H.T., Uysal, R.S., Velioğlu, H.M., Yadegari, R.J., & Rishkan, M.M. (2014). A novel method for discrimination of beef and horsemeat using Raman spectroscopy. Food Chemistry, 148, 37-41. https://doi.org/10.1016/j.foodchem.2013.10.006
- Brereton, R.G., Jansen, J., Lopes, J., Marini, F., Pomerantsev, A., Rodionova, O., Tauler, R. (2018). Chemometrics in analytical chemistry—part II: modeling, validation, and applications. Analytical and Bioanalytical Chemistry, 410, 6691-6704. https://doi.org/10.1007/s00216-018-1283-4
- Butler, H.J., Ashton, L., Bird, B., Cinque, G., Curtis, K., Dorney, J., Martin-Hirsch, P.L. (2016). Using Raman spectroscopy to characterize biological materials. Nature Protocols, 11(4), 664-687.
- CANDOĞAN, K., DENİZ, E., ALTUNTAŞ, E.G., Naşit, İ., & Demiralp, D.Ö. (2020). Detection of pork, horse or donkey meat adulteration in beef-based formulations by Fourier transform infrared spectroscopy. Gıda, 45(2), 369-379. https://doi.org/10.15237/gida.GD19146
- Cen, H., & He, Y. (2007). Theory and application of near infrared reflectance spectroscopy in determination of food quality. Trends in Food Science & Technology, 18(2), 72-83. https://doi.org/10.1016/j.tifs.2006.09.003
- Chai, J., Zhang, K., Xue, Y., Liu, W., Chen, T., Lu, Y., & Zhao, G. (2020). Review of MEMS based Fourier transform spectrometers. Micromachines, 11(2), 214. https://doi.org/10.3390/mi11020214
- Cheng, J.-H., Nicolai, B., & Sun, D.-W. (2017). Hyperspectral imaging with multivariate analysis for technological parameters prediction and classification of muscle foods: A review. Meat Science, 123, 182-191. https://doi.org/10.1016/j.meatsci.2016.09.017
- Chophi, R., Sharma, S., Jossan, J.K., & Singh, R. (2021). Rapid and non-destructive analysis of eye-cosmetics using ATR-FTIR spectroscopy and chemometrics. Forensic Science International, 329, 111062. https://doi.org/10.1016/j.forsciint.2021.111062
- Cruz-Tirado, J.P., Vieira, M.S.D.S., Correa, O.O.V., Delgado, D.R., Angulo-Tisoc, J.M., Barbin, D.F., & Siche, R. (2024). Detection of adulteration of Alpaca (Vicugna pacos) meat using a portable NIR spectrometer and NIR-hyperspectral imaging. Journal of Food Composition and Analysis, 126, 105901. https://doi.org/10.1016/j.jfca.2023.105901
- Dashti, A., Müller-Maatsch, J., Roetgerink, E., Wijtten, M., Weesepoel, Y., Parastar, H., & Yazdanpanah, H. (2023). Comparison of a portable Vis-NIR hyperspectral imaging and a snapscan SWIR hyperspectral imaging for evaluation of meat authenticity. Food Chemistry: X, 18, 100667. https://doi.org/10.1016/j.fochx.2023.100667
- Dashti, A., Müller-Maatsch, J., Weesepoel, Y., Parastar, H., Kobarfard, F., Daraei, B., Yazdanpanah, H. (2021). The feasibility of two handheld spectrometers for meat speciation combined with chemometric methods and its application for halal certification. Foods, 11(1), 71. https://doi.org/10.3390/foods11010071
- Dashti, A., Weesepoel, Y., Müller-Maatsch, J., Parastar, H., Kobarfard, F., Daraei, B., & Yazdanpanah, H. (2022). Assessment of meat authenticity using portable Fourier transform infrared spectroscopy combined with multivariate classification techniques. Microchemical Journal, 181, 107735. https://doi.org/10.1016/j.microc.2022.107735
- De Girolamo, A., Cervellieri, S., Mancini, E., Pascale, M., Logrieco, A.F., & Lippolis, V. (2020). Rapid authentication of 100% italian durum wheat pasta by FT-NIR spectroscopy combined with chemometric tools. Foods, 9(11), 1551. https://doi.org/10.3390/foods9111551
- Deniz, E., Güneş Altuntaş, E., Ayhan, B., İğci, N., Özel Demiralp, D., & Candoğan, K. (2018). Differentiation of beef mixtures adulterated with chicken or turkey meat using FTIR spectroscopy. Journal of Food Processing and Preservation, 42(10), e13767. https://doi.org/10.1111/jfpp.13767
- Dixit, Y., Casado‐Gavalda, M.P., Cama‐Moncunill, R., Cama‐Moncunill, X., Markiewicz‐Keszycka, M., Cullen, P., & Sullivan, C. (2017). Developments and challenges in online NIR spectroscopy for meat processing. Comprehensive Reviews in Food Science and Food Safety, 16(6), 1172-1187. https://doi.org/10.1111/1541-4337.12295
- Edwards, K., Manley, M., Hoffman, L.C., & Williams, P.J. (2021). Non-destructive spectroscopic and imaging techniques for the detection of processed meat fraud. Foods, 10(2), 448. https://doi.org/10.3390/foods10020448
- ElMasry, G., & Sun, D.-W. (2010). Principles of hyperspectral imaging technology Hyperspectral imaging for food quality analysis and control (pp. 3-43): Elsevier. https://doi.org/10.1016/B978-0-12-374753-2.10001-2
- ElMasry, G., Sun, D.-W., & Allen, P. (2012). Near-infrared hyperspectral imaging for predicting colour, pH and tenderness of fresh beef. Journal of Food Engineering, 110(1), 127-140. https://doi.org/10.1016/j.jfoodeng.2011.11.028
- Gemperline, P. (2006). Practical guide to chemometrics: CRC press. https://doi.org/10.1201/9781420018301
- Green, R.O., Eastwood, M.L., Sarture, C.M., Chrien, T.G., Aronsson, M., Chippendale, B.J., & Solis, M. (1998). Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS). Remote Sensing of Environment, 65(3), 227-248. https://doi.org/10.1016/S0034-4257(98)00064-9
- Guo, B., Zhao, J., Weng, S., Yin, X., & Tang, P. (2020). Rapid determination of minced beef adulteration using hyperspectral reflectance spectroscopy and multivariate methods. Paper presented at the IOP Conference Series: Earth and Environmental Science. https://doi.org/https://doi.org/10.1088/1755-1315/428/1/012049
- Guo, Y., Ni, Y., & Kokot, S. (2016). Evaluation of chemical components and properties of the jujube fruit using near infrared spectroscopy and chemometrics. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 153, 79-86. https://doi.org/10.1016/j.saa.2015.08.006
- Hemmateenejad, B., Akhond, M., & Samari, F. (2007). A comparative study between PCR and PLS in simultaneous spectrophotometric determination of diphenylamine, aniline, and phenol: Effect of wavelength selection. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 67(3-4), 958-965. https://doi.org/10.1016/j.saa.2006.09.014
- Hoffman, L., Ingle, P., Khole, A.H., Zhang, S., Yang, Z., Beya, M., & Cozzolino, D. (2023). Discrimination of lamb (Ovis aries), emu (Dromaius novaehollandiae), camel (Camelus dromedarius) and beef (Bos taurus) binary mixtures using a portable near infrared instrument combined with chemometrics. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 294, 122506. https://doi.org/10.1016/j.saa.2023.122506
- Hong, T., Yin, J.-Y., Nie, S.-P., & Xie, M.-Y. (2021). Applications of infrared spectroscopy in polysaccharide structural analysis: Progress, challenge and perspective. Food Chemistry: X, 12, 100168. https://doi.org/10.1016/j.fochx.2021.100168
- Hong, Y., Chen, Y., Yu, L., Liu, Y., Liu, Y., Zhang, Y., & Cheng, H. (2018). Combining fractional order derivative and spectral variable selection for organic matter estimation of homogeneous soil samples by VIS–NIR spectroscopy. Remote Sensing, 10(3), 479. https://doi.org/https://doi.org/10.3390/rs10030479
- Hu, W., Tang, R., Li, C., Zhou, T., Chen, J., & Chen, K. (2021). Fractional order modeling and recognition of nitrogen content level of rubber tree foliage. Journal of Near Infrared Spectroscopy, 29(1), 42-52. https://doi.org/10.1177/0967033520966693
- Ignat, T., De Falco, N., Berger-Tal, R., Rachmilevitch, S., & Karnieli, A. (2021). A novel approach for long-term spectral monitoring of desert shrubs affected by an oil spill. Environmental Pollution, 289, 117788. https://doi.org/10.1016/j.envpol.2021.117788
- Jiang, H., Cheng, F., & Shi, M. (2020). Rapid identification and visualization of jowl meat adulteration in pork using hyperspectral imaging. Foods, 9(2), 154. https://doi.org/10.3390/foods9020154
- Jiang, H., Jiang, X., Ru, Y., Chen, Q., Wang, J., Xu, L., & Zhou, H. (2022). Detection and visualization of soybean protein powder in ground beef using visible and near-infrared hyperspectral imaging. Infrared Physics & Technology, 127, 104401. https://doi.org/10.1016/j.infrared.2022.104401
- Jiang, H., Jiang, X., Ru, Y., Wang, J., Xu, L., & Zhou, H. (2020). Application of hyperspectral imaging for detecting and visualizing leaf lard adulteration in minced pork. Infrared Physics & Technology, 110, 103467. https://doi.org/10.1016/j.infrared.2020.103467
- Jiang, H., Yang, Y., & Shi, M. (2021). Chemometrics in tandem with hyperspectral imaging for detecting authentication of raw and cooked mutton rolls. Foods, 10(9), 2127. https://doi.org/10.3390/foods10092127
- Jing-yuan, Z., Jun-qin, Z., Mei, S., Xing-hai, C., & Ye-lin, L. (2022). Visualization of lamb adulteration based on hyperspectral imaging for non-destructive quantitative detection. Food and Machinery, 38(10), 61-68. https://doi.org/10.13652/j.spjx.1003.5788.2022.90174
- Kamruzzaman, M., Makino, Y., & Oshita, S. (2016). Rapid and non-destructive detection of chicken adulteration in minced beef using visible near-infrared hyperspectral imaging and machine learning. Journal of Food Engineering, 170, 8-15. https://doi.org/10.1016/j.jfoodeng.2015.08.023
- Kazemi, A., Mahmoudi, A., Veladi, H., & Javanmard, A. (2022). Detection of chicken and fat adulteration in minced lamb meat by VIS/NIR spectroscopy and chemometrics methods. International Journal of Food Engineering, 18(7), 525-535. https://doi.org/10.1515/ijfe-2021-0333
- Kazemi, A., Mahmoudi, A., Veladi, H., Javanmard, A., & Khojastehnazhand, M. (2022). Rapid identification and quantification of intramuscular fat adulteration in lamb meat with VIS–NIR spectroscopy and chemometrics methods. Journal of Food Measurement and Characterization, 16(3), 2400-2410. https://doi.org/10.1007/s11694-022-01352-y
- Keshavarzi, Z., Barzegari Banadkoki, S., Faizi, M., Zolghadri, Y., & Shirazi, F. H. (2020). Comparison of transmission FTIR and ATR spectra for discrimination between beef and chicken meat and quantification of chicken in beef meat mixture using ATR-FTIR combined with chemometrics. Journal of food science and technology, 57, 1430-1438. https://doi.org/10.1007/s13197-019-04178-7
- Khaled, A. Y., Parrish, C. A., & Adedeji, A. (2021). Emerging nondestructive approaches for meat quality and safety evaluation—A review. Comprehensive Reviews in Food Science and Food Safety, 20(4), 3438-3463. https://doi.org/https://doi.org/10.1111/1541-4337.12781
- Leng, T., Li, F., Xiong, L., Xiong, Q., Zhu, M., & Chen, Y. (2020). Quantitative detection of binary and ternary adulteration of minced beef meat with pork and duck meat by NIR combined with chemometrics. Food Control, 113, 107203. https://doi.org/10.1016/j.foodcont.2020.107203
- Li, Z., Wang, Q., Lv, J., Ma, Z., & Yang, L. (2015). Improved quantitative analysis of spectra using a new method of obtaining derivative spectra based on a singular perturbation technique. Applied Spectroscopy, 69(6), 721-732. https://doi.org/1366/14-07642
- López-Maestresalas, A., Insausti, K., Jarén, C., Pérez-Roncal, C., Urrutia, O., Beriain, M.J., & Arazuri, S. (2019). Detection of minced lamb and beef fraud using NIR spectroscopy. Food Control, 98, 465-473. https://doi.org/10.1016/j.foodcont.2018.12.003
- Mabood, F., Boqué, R., Alkindi, A.Y., Al-Harrasi, A., Al Amri, I.S., Boukra, S., Naureen, Z. (2020). Fast detection and quantification of pork meat in other meats by reflectance FT-NIR spectroscopy and multivariate analysis. Meat Science, 163, 108084. https://doi.org/10.1016/j.meatsci.2020.108084
- Meza Ramirez, C.A., Greenop, M., Ashton, L., & Rehman, I.U. (2021). Applications of machine learning in spectroscopy. Applied Spectroscopy Reviews, 56(8-10), 733-763. https://doi.org/10.1080/05704928.2020.1859525
- Miller, M. F., Carr, M., Ramsey, C., Crockett, K., & Hoover, L. (2001). Consumer thresholds for establishing the value of beef tenderness. Journal of Animal Science, 79(12), 3062-3068. https://doi.org/https://doi.org/10.2527/2001.79123062x
- Mishra, P., Passos, D., Marini, F., Xu, J., Amigo, J.M., Gowen, A.A., Rutledge, D.N. (2022). Deep learning for near-infrared spectral data modelling: Hypes and benefits. TrAC Trends in Analytical Chemistry, 116804. https://doi.org/10.1016/j.trac.2022.116804
- Næs, T., Isaksson, T., Fearn, T., & Davies, T. (2002). A user-friendly guide to multivariate calibration and classification (Vol. 6): NIR Chichester. https://doi.org/10.1002/cem.815
- Oliveri, P., López, M.I., Casolino, M.C., Ruisánchez, I., Callao, M.P., Medini, L., & Lanteri, S. (2014). Partial least squares density modeling (PLS-DM)–A new class-modeling strategy applied to the authentication of olives in brine by near-infrared spectroscopy. Analytica Chimica acta, 851, 30-36. https://doi.org/10.1016/j.aca.2014.09.013
- Pchelkina, V.A., Chernukha, IM., Fedulova, L.V., & Ilyin, N.A. (2022). Raman spectroscopic techniques for meat analysis: A review. Теория и практика переработки мяса, 7(2), 97-111. https://doi.org/10.21323/2414-438X-2022-7-2-97-111
- Premanandh, J. (2013). Horse meat scandal–A wake-up call for regulatory authorities. Food Control, 34(2), 568-569. https://doi.org/10.1016/j.foodcont.2013.05.033
- Rabatel, G., Marini, F., Walczak, B., & Roger, J.M. (2020). VSN: Variable sorting for normalization. Journal of Chemometrics, 34(2), e3164. https://doi.org/10.1002/cem.3164
- Rady, A., & Adedeji, A.A. (2020). Application of hyperspectral imaging and machine learning methods to detect and quantify adulterants in minced meats. Food Analytical Methods, 13, 970-981. https://doi.org/10.1007/s12161-020-01719-1
- Reinhard, E., Heidrich, W., Debevec, P., Pattanaik, S., Ward, G., & Myszkowski, K. (2010). High dynamic range imaging: acquisition, display, and image-based lighting: Morgan Kaufmann.
- Rinnan, Å., Van Den Berg, F., & Engelsen, S.B. (2009). Review of the most common pre-processing techniques for near-infrared spectra. TrAC Trends in Analytical Chemistry, 28(10), 1201-1222. https://doi.org/10.1016/j.trac.2009.07.007
- Robert, C., Fraser-Miller, S.J., Jessep, W.T., Bain, W.E., Hicks, T.M., Ward, J.F., Gordon, K.C. (2021). Rapid discrimination of intact beef, venison and lamb meat using Raman spectroscopy. Food Chemistry, 343, 128441. https://doi.org/10.1016/j.foodchem.2020.128441
- Saleem, M., Amin, A., & Irfan, M. (2021). Raman spectroscopy based characterization of cow, goat and buffalo fats. Journal of food science and technology, 58, 234-243. https://doi.org/10.1007/s13197-020-04535-x
- Shao, X., Cui, X., Wang, M., & Cai, W. (2019). High order derivative to investigate the complexity of the near infrared spectra of aqueous solutions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 213, 83-89. https://doi.org/10.1016/j.saa.2019.01.059
- Shawky, E., El-Khair, R.M.., & Selim, D.A. (2020). NIR spectroscopy-multivariate analysis for rapid authentication, detection and quantification of common plant adulterants in saffron (Crocus sativus) stigmas. Lwt, 122, 109032. https://doi.org/10.1016/j.lwt.2020.109032
- Siddiqui, M.A., Khir, M.H.M., Witjaksono, G., Ghumman, A.S.M., Junaid, M., Magsi, S.A., & Saboor, A. (2021). Multivariate analysis coupled with M-SVM classification for lard adulteration detection in meat mixtures of beef, lamb, and chicken using FTIR spectroscopy. Foods, 10(10), 2405. https://doi.org/10.3390/foods10102405
- Silva, L.C., Folli, G.S., Santos, LP., Barros, I.H., Oliveira, B.G., Borghi, F.T., & Romao, W. (2020). Quantification of beef, pork, and chicken in ground meat using a portable NIR spectrometer. Vibrational Spectroscopy, 111, 103158. https://doi.org/10.1016/j.vibspec.2020.103158
- Stark, E., Luchter, K., & Margoshes, M. (1986). Near-infrared analysis (NIRA): A technology for quantitative and qualitative analysis. Applied Spectroscopy Reviews, 22(4), 335-399.
- Stuart, B.H. (2004). Infrared spectroscopy: fundamentals and applications: John Wiley & Sons.
- Totaro, M.P., Squeo, G., De Angelis, D., Pasqualone, A., Caponio, F., & Summo, C. (2023). Application of NIR spectroscopy coupled with DD-SIMCA class modelling for the authentication of pork meat. Journal of Food Composition and Analysis, 118, 105211. https://doi.org/10.1016/j.jfca.2023.105211
- Wang, H.-P., Chen, P., Dai, J.-W., Liu, D., Li, J.-Y., Xu, Y.-P., & Chu, X.-L. (2022). Recent advances of chemometric calibration methods in modern spectroscopy: Algorithms, strategy, and related issues. TrAC Trends in Analytical Chemistry, 153, 116648. https://doi.org/10.1016/j.trac.2022.116648
- Wang, K., Bian, X., Tan, X., Wang, H., & Li, Y. (2021). A new ensemble modeling method for multivariate calibration of near infrared spectra. Analytical Methods, 13(11), 1374-1380. https://doi.org/1039/D1AY00017A
- Wang, L., Liang, J., Li, F., Guo, T., Shi, Y., Li, F., & Xu, H. (2024). Deep learning based on the Vis-NIR two-dimensional spectroscopy for adulteration identification of beef and mutton. Journal of Food Composition and Analysis, 126, 105890. https://doi.org/10.1016/j.jfca.2023.105890
- Weng, S., Guo, B., Tang, P., Yin, X., Pan, F., Zhao, J., & Zhang, D. (2020). Rapid detection of adulteration of minced beef using Vis/NIR reflectance spectroscopy with multivariate methods. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 230, 118005. https://doi.org/10.1016/j.saa.2019.118005
- Wold, S., & Sjöström, M. (1977). SIMCA: a method for analyzing chemical data in terms of similarity and analogy: ACS Publications. https://doi.org/10.1021/bk-1977-0052.ch012
- Xiong, Z., Sun, D.-W., Pu, H., Gao, W., & Dai, Q. (2017). Applications of emerging imaging techniques for meat quality and safety detection and evaluation: A review. Critical Reviews in Food Science and Nutrition, 57(4), 755-768. https://doi.org/1080/10408398.2014.954282
- Xu, W., Xia, J., Min, S., & Xiong, Y. (2022). Fourier transform infrared spectroscopy and chemometrics for the discrimination of animal fur types. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 274, 121034. https://doi.org/10.1016/j.saa.2022.121034
- Yang, F., Sun, J., Cheng, J., Fu, L., Wang, S., & Xu, M. (2023). Detection of starch in minced chicken meat based on hyperspectral imaging technique and transfer learning. Journal of Food Process Engineering, 46(4), e14304. https://doi.org/10.1111/jfpe.14304
- Yao, Z., Su, H., Yao, J., & Huang, X. (2021). Yield-adjusted operation for convolution filter denoising. Analytical Chemistry, 93(49), 16489-16503. https://doi.org/10.1021/acs.analchem.1c03606
- Zahra, A., Qureshi, R., Sajjad, M., Sadak, F., Nawaz, M., Khan, H.A., & Uzair, M. (2023). Current advances in imaging spectroscopy and its state-of-the-art applications. Expert Systems with Applications, 122172. https://doi.org/10.1016/j.eswa.2023.122172
- Zhang, W., Kasun, L.C., Wang, Q.J., Zheng, Y., & Lin, Z. (2022). A review of machine learning for near-infrared spectroscopy. Sensors, 22(24), 9764. https://doi.org/10.3390/s22249764
- Zhang, W., Ma, J., & Sun, D.-W. (2021). Raman spectroscopic techniques for detecting structure and quality of frozen foods: principles and applications. Critical Reviews in Food Science and Nutrition, 61(16), 2623-2639. https://doi.org/1080/10408398.2020.1828814
- Zhao, Z., Yu, H., Zhang, S., Du, Y., Sheng, Z., Chu, Y., & Deng, L. (2020). Visualization accuracy improvement of spectral quantitative analysis for meat adulteration using Gaussian distribution of regression coefficients in hyperspectral imaging. Optik, 212, 164737. https://doi.org/10.1016/j.ijleo.2020.164737
- Zheng, K.-Y., Zhang, X., Tong, P.-J., Yao, Y., & Du, Y.-P. (2015). Pretreating near infrared spectra with fractional order Savitzky–Golay differentiation (FOSGD). Chinese Chemical Letters, 26(3), 293-296. https://doi.org/10.1016/j.cclet.2014.10.023
|