- Ali, M. M., Bachik, N. A., Muhadi, N., Yusof, T. N. T., & Gomes, C. (2019). Non-destructive techniques of detecting plant diseases: A review. Physiological and Molecular Plant Pathology, 108, 101426. https://doi.org/10.1016/j.pmpp.2019.101426
- Al-Zughbi, I., & Krayem, M. (2022). Quince fruit Cydonia oblonga Mill nutritional composition, antioxidative properties, health benefits and consumers preferences towards some industrial quince products: A review. Food Chemistry, 393, 133362. https://doi.org/10.1016/j.foodchem.2022.133362
- Baldi, P., & Sadowski, P. (2014). The dropout learning algorithm. Artificial Intelligence, 210, 78-122.
- Bradshaw, M., Braun, U., Götz, M., & Jurick, W. (2022). Phylogeny and taxonomy of powdery mildew caused by Erysiphe species on Lupinus hosts. Mycologia, 114(1), 76-88. https://doi.org/10.1080/00275514.2021.1973287
- Chen, J., Liu, Q., & Gao, L. (2019). Visual tea leaf disease recognition using a convolutional neural network model. Symmetry, 11, 343. https://doi.org/10.3390/sym11030343.
- Chen, R. C., Dewi, C., Huang, S. W., & Caraka, R. E. (2020). Selecting critical features for data classification based on machine learning methods. Journal of Big Data 7, 52. https://doi.org/10.1186/s40537-020-00327-4
- Cruz, A., Ampatzidis, Y., Pierro, R., Materazzi, A., Panattoni, A., De Bellis, L., & Luvisi, A. (2019). Detection of grapevine yellows symptoms in Vitis vinifera with artificial intelligence. Computers and Electronics in Agriculture, 157, 63-76. https://doi.org/10.1016/j.compag.2018.12.028
- Dai, G., & Fan, J. (2022). An industrial-grade solution for crop disease image detection tasks. Frontiers in Plant Science., 13, 921057. https://doi.org/10.3389/fpls.2022.921057.
- David, M. (2023). Quince tree for the UK gardener. Retrieved March 28, 2024, from https://gardenfocused.co.uk/fruitarticles/quince.php
- Dawod, R. G., & Dobre, C. (2022). Upper and lower leaf side detection with machine learning methods. Sensors, 22, 2696. https://doi.org/10.3390/s22072696
- FAO. (2021). Crops production data. Retrieved from http://www.fao.org/faostat
- Farokhzad,, Modaress Motlagh, A., Ahmadi Moghaddam, P., Jalali Honarmand, S., & Kheiralipour, K. (2024). A machine learning system to identify progress level of dry rot disease in potato tuber based on digital thermal image processing. Scientific Reports, 14(1), 1995. https://doi.org/10.1038/s41598-023-50948-x
- Gupta, T. (2017). Plant leaf disease analysis using image-processing technique with modified SVM-CS classifier. International Journal of Engineering & Management Technology, 5, 11-17.
- Gutiérrez, S., Hernández, I., Ceballos, S., Barrio, I., Díez-Navajas, A. M., & Tardaguila, J. (2021). Deep learning for the differentiation of downy mildew and spider mite in grapevine under field conditions. Computers and Electronics in Agriculture, 182,105991. https://doi.org/10.1016/j.compag.2021.105991
- Harteveld, D. O. C., Akinsanmi, O. A., & Drenth, A. (2013). Multiple Alternaria species groups are associated with leaf blotch and fruit spot diseases of apple in Australia. Plant Pathology, 62(2), 289-297. https://doi.org/10.1111/j.1365-3059.2012.02637.x
- He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition(pp. 770-778).
- Hosainpour, A., Kheiralipour, K., Nadimi, M., & Paliwal, J. (2022). Quality assessment of dried white mulberry (Morus alba) using machine vision. Horticulturae, 8(11), 1011. https://doi.org/10.3390/horticulturae8111011
- Hossain, S., Mou, R. M., Hasan, M. M., Chakraborty, S., & Razzak, M. A. (2018). Recognition and detection of tea leaf’s diseases using support vector machine. In Proceedings of the 2018 IEEE 14th International Colloquium on Signal Processing & Its Applications (CSPA), Penang, Malaysia. https://doi.org/1109/CSPA.2018.8368703
- Islam, M., Dinh, A., Wahid, K., & Bhowmik, P. (2017). Detection of potato diseases using image segmentation and multiclass support vector machine. In Proceedings of the 30th IEEE Canadian Conference on Electrical andComputer Engineering, Windsor, ON, Canada, pp. 1-4. https://doi.org/1109/CCECE.2017.7946594
- Jiang, F., Lu, Y., Chen, Y., Cai, D., & Li, G. (2020). Image recognition of four rice leaf diseases based on deep learning and support vector machine. Computers and Electronics in Agriculture, 179. https://doi.org/10.1016/j.compag.2020.105824.
- Joshi, R. C., Kaushik, M., Dutta, M. K., Srivastava, A., & Choudhary, N. (2021). VirLeafNet: automatic analysis and viral disease diagnosis using deep-learning in Vigna mungo plant. Ecological Informatics. https://doi.org/10.1016/j.ecoinf.2020.101197
- Kawasaki,, Uga, H., Kagiwada, S., & Iyatomi, H. (2015). Basic study of automated diagnosis of viral plant diseases using convolutional neural networks. In Proceedings of the 12th International Symposium on Visual Computing, Las Vegas, NV, USA, pp. 638-645. https://doi.org/10.1016/j.neucom.2017.06.023
- Kheiralipour, K., Nadimi, M., & Paliwal, J. (2022). Development of an intelligent imaging system for ripeness determination of wild pistachios. Sensors, 22(19), 7134. https://doi.org/10.3390/s22197134
- Lu, Y., Yi, S., Zeng, N., Liu, Y., & Zhang, Y. (2017). Identification of Rice diseases using deep convolutional neural networks, Neuro Computing, 267, 378-384. https://doi.org/10.1016/j.neucom.2017.06.023
- Mianjy, P., Arora, R., &Vidal, R. (2018), July. On the implicit bias of dropout. In International conference on machine learning(pp. 3540-3548). PMLR.
- Miranda, J. L., Gerardo, B. D., & Tanguilig, B. T. (2014). Pest detection and extraction using image processing techniques. International Journal of Computer and Communication Engineering, 3, 189. https://doi.org/7763/IJCCE.2014.V3.317
- Mohanty, S. P., Hughes, D. P., & Salathé, M. (2016). Using deep learning for image-based plant disease detection, Frontiers in Plant Science, 7, 1419. https://doi.org/10.3389/fpls.2016.01419
- Moore, J. (2022). Quince tree disease – Quince leaf blight. Retrieved April 1, 2024, from https://www.pyracantha.co.uk/quince-tree-disease-quince-leaf-blight.
- Qin, F., Liu, D. X., Sun, B. D., Ruan, L., Ma, Z., & Wang, H. (2016). Identification of alfalfa leaf diseases using image recognition technology. PLoS ONE, 11. https://doi.org/10.1371/journalpone.0168274.
- Rothe, P., & Kshirsagar, R. V. (2015). Cotton leaf disease identification using pattern recognition techniques. In Proceedings of the 2015 International Conference on Pervasive Computing, Pune, India, 1-6. https://doi.org/10.1109/PERVASIVE.2015.7086983
- Saygili, H., Aysan, Y., Mirik, M., & Sahin, F. (2004), July. Severe outbreak of fire blight on quince in Turkey. In X International Workshop on Fire Blight, 704, 51-54. https://doi.org/10.17660/ActaHortic.2006.704.4
- Shojaeian, A., Bagherpour, H., Bagherpour, R., Parian, J. A., Fatehi, F., & Taghinezhad, E. (2023). The Potential Application of Innovative Methods in Neural Networks for Surface Crack Recognition of Unshelled Hazelnut. Journal of Food Processing and Preservation, 2023. https://doi.org/10.1155/2023/2177724
- Sladojevic, S., Arsenovic, M., Anderla, A., Culibrk, D., & Stefanovic, D. (2016). Deep neural networks-based recognition of plant diseases by leaf image classification. Computational Intelligence and Neuroscience, https://doi.org/10.1155/2016/3289801
- Sujatha, R., Chatterjee, J. M., Jhanjhi, N. Z., & Brohi, S. N. (2021). Performance of deep learning vs machine learning in plant leaf disease detection. Microprocess. Microsyst. https://doi.org/10.1016/j.micpro.2020.103615
- Sun, C., Huang, C., Zhang, H., Chen, B., An, F., Wang, L., & Yun, T. (2022). Individual tree crown segmentation and crown width extraction from a heightmap derived from aerial laser scanning data using a deep learning framework. Frontiers in Plant Science, 13, 914-974. https://doi.org/10.3389/fpls.2022.914974
- Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. In Proceedings of the IEEE conference on computer vision and pattern recognition(pp. 2818-2826).
- Taner, A., Öztekin, Y. B., & Duran, H. (2021). Performance analysis of deep learning CNN models for variety classification in hazelnut. Sustainability, 13(12), 6527. https://doi.org/10.3390 /su13126527
- Tian, Y., Yang, G., Wang, Z., Wang, H., Li, E., & Liang, Z. (2019). Apple detection during different growth stages in orchards using the improved YOLO-V3 model. Computers and Electronics in Agriculture., 157, 417-426. https://doi.org/10.1016/j.compag.2019.01.012
- Tiwari, V., Joshi, R. C., & Dutta, M. K. (2021). Dense convolutional neural networks based multiclass plant disease detection and classification using leaf images. Ecological Informatics, 63, 101289. https://doi.org/10.1016/j.ecoinf.2021.101289
- Vidyarthi, S. K., Singh, S. K., Xiao, H. W., & Tiwari, R. (2021). Deep learnt grading of almond kernels. Journal of Food Process Engineering, 44(4), p.e13662.
- Yang, L., Luo, J., Wang, Z., Chen, Y., & Wu, C. (2019). Research on recognition for cotton spider mites’ damage level based on deep learning. International Journal of Agricultural and Biological Engineering, 12(6), 129. https://doi.org/134. 10.25165/j.ijabe.20191206.4816
|