- Amin, A.M., Ahmad, A.S., Yin, Y.Y., Yahya, N., & Ibrahim, N. (2007). Extraction, purification and characterization of durian (Durio zibethinus) seed gum. Food Hydrocolloids, 21(2), 273-279. https://doi.org/10.1016/j.foodhyd.2006.04.004
- Behrouzian, F., Razavi, S.M.A., & Karazhiyan, H. (2013). The effect of pH, salts and sugars on the rheological properties of cress seed (Lepidium sativum) gum. International Journal of Food Science & Technology, 48(12), 2506-2513. https://doi.org/10.1111/ijfs.12242
- Brenelli, S., Campos, S., & Saad, M. (1997). Viscosity of gums in vitro and their ability to reduce postprandial hyperglycemia in normal subjects. Brazilian Journal of Medical and Biological Research, 30(12), 1437-1440. https://doi.org/10.1590/S0100-879X1997001200009
- Farahnaky, A., Shanesazzadeh, E., Mesbahi, G., & Majzoobi, M. (2013). Effect of various salts and pH condition on rheological properties of Salvia macrosiphon hydrocolloid solutions. Journal of Food Engineering, 116(4), 782-788. https://doi.org/10.1016/j.jfoodeng.2013.01.036
- Hayta, M., Dogan, M., & Aslan Türker, D. (2020). Rheology and microstructure of galactomannan–xanthan gum systems at different pH values. Journal of Food Process Engineering, 43(12), e13573. https://doi.org/10.1111/jfpe.13573
- Jannatamani, H., Motamedzadegan, A., Farsi, M., & Yousefi, H. (2022). Rheological properties of wood/bacterial cellulose and chitin nano-hydrogels as a function of concentration and their nano-films properties. IET Nanobiotechnology, 16(4), 158-169. https://doi.org/10.1049/nbt2.12083
- Kang, J., Yue, H., Li, X., He, C., Li, Q., Cheng, L., Zhang, J., Liu, Y., Wang, S., & Guo, Q. (2023). Structural, rheological and functional properties of ultrasonic treated xanthan gums. International Journal of Biological Macromolecules, 246, 125650. https://doi.org/10.1016/j.ijbiomac.2023.125650
- Koocheki, A., Hesarinejad, M.A., & Mozafari, M.R. (2022). Lepidium perfoliatum seed gum: investigation of monosaccharide composition, antioxidant activity and rheological behavior in presence of salts. Chemical and Biological Technologies in Agriculture, 9(1), 61. https://doi.org/10.1186/s40538-022-00322-2
- Kumar, Y., Roy, S., Devra, A., Dhiman, A., & Prabhakar, P.K. (2021). Ultrasonication of mayonnaise formulated with xanthan and guar gums: Rheological modeling, effects on optical properties and emulsion stability. LWT, 149, 111632. https://doi.org/10.1016/j.lwt.2021.111632
- Liu, J., Shen, J., Shim, Y.Y., & Reaney, M.J.T. (2016). Carboxymethyl derivatives of flaxseed (Linum usitatissimum) gum: characterisation and solution rheology. International Journal of Food Science & Technology, 51(2), 530-541. https://doi.org/10.1111/ijfs.12985
- Medina-Torres, L., Brito-De La Fuente, E., Torrestiana-Sanchez, B., & Katthain, R. (2000). Rheological properties of the mucilage gum (Opuntia ficus indica). Food Hydrocolloids, 14(5), 417-424. https://doi.org/10.1016/S0268-005X(00)00015-1
- Mullineux, G., & Simmons, M.J.H. (2008). Influence of rheological model on the processing of yoghurt. Journal of Food Engineering, 84(2), 250-257. https://doi.org/10.1016/j.jfoodeng.2007.05.015
- Nor Hayati, I., Wai Ching, C., & Rozaini, M.Z.H. (2016). Flow properties of o/w emulsions as affected by xanthan gum, guar gum and carboxymethyl cellulose interactions studied by a mixture regression modelling. Food Hydrocolloids, 53, 199-208. https://doi.org/10.1016/j.foodhyd.2015.04.032
- Nour, V., Trandafir, I., & Ionica, M.E. (2010). HPLC organic acid analysis in different citrus juices under reversed phase conditions. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 38(1), 44-48. https://doi.org/10.15835/nbha.43.2.10081
- Ozgur, A., Dogan, M., & Karaman, S. (2017). Rheological interactions of the xanthan gum and carboxymethyl cellulose as alternative to pectin in organic acid–sucrose model system: simplex lattice mixture design approach. European Food Research and Technology, 243(6), 1041-1056. https://doi.org/10.1007/s00217-016-2809-7
- Rana, V., Rai, P., Tiwary, A.K., Singh, R.S., Kennedy, J.F., & Knill, C.J. (2011). Modified gums: Approaches and applications in drug delivery. Carbohydrate Polymers, 83(3), 1031-1047. https://doi.org/10.1016/j.carbpol.2010.09.010
- Salehi, F. (2020). Effect of common and new gums on the quality, physical, and textural properties of bakery products: A review. Journal of Texture Studies, 51(2), 361-370. https://doi.org/10.1111/jtxs.12482
- Salehi, F., & Inanloodoghouz, M. (2023). Rheological properties and color indexes of ultrasonic treated aqueous solutions of basil, Lallemantia, and wild sage gums. International Journal of Biological Macromolecules, 253, 127828. https://doi.org/10.1016/j.ijbiomac.2023.127828
- Salehi, F., Razavi Kamran, H., & Goharpour, K. (2023). Production and evaluation of total phenolics, antioxidant activity, viscosity, color, and sensory attributes of quince tea infusion: Effects of drying method, sonication, and brewing process. Ultrasonics Sonochemistry, 99, 106591. https://doi.org/10.1016/j.ultsonch.2023.106591
- Salehi, F., Samary, K., & Tashakori, M. (2024). Influence of organic acids on the viscosity and rheological behavior of guar gum solution. Results in Engineering, 22, 102307. https://doi.org/10.1016/j.rineng.2024.102307
- Satorabi, M., Salehi, F., & Rasouli, M. (2021). The influence of xanthan and balangu seed gums coats on the kinetics of infrared drying of apricot slices: GA-ANN and ANFIS modeling. International Journal of Fruit Science, 21(1), 468-480. https://doi.org/10.1080/15538362.2021.1898520
- Sharoba, A.M., & Ramadan, M.F. (2011). Rheological behavior and physicochemical characteristics of goldenberry (Physalis peruviana) juice as affected by enzymatic treatment. Journal of Food Processing and Preservation, 35(2), 201-219. https://doi.org/10.1111/j.1745-4549.2009.00471.x
- Sun, H., Jiang, Y., Zhang, Y., & Jiang, L. (2024). A review of constitutive models for non-Newtonian fluids. Fractional Calculus and Applied Analysis. https://doi.org/10.1007/s13540-024-00294-0
- Yildiz, F. (2010). Food acids: Organic acids, volatile organic acids, and phenolic acids, in: Yildiz, F. (Ed.), Advances in Food Biochemistry, 1st Edition ed. CRC Press, Boca Raton, p. 28. https://doi.org/10.1201/9781420007695-15
- Yousefi, A., Elmarhoum, S., Khodabakhshaghdam, S., Ako, K., & Hosseinzadeh, G. (2022). Study on the impact of temperature, salts, sugars and pH on dilute solution properties of Lepidium perfoliatum seed gum. Food Science & Nutrition, 10(11), 3955-3968. https://doi.org/10.1002/fsn3.2991
|