Alipoor Yamchi, H., Bihamta, M., Peyghambari, S.A., Naghavi, M., & Majnoon Hoseini, N. (2013). Grouping of Kabuli chickpea genotypes using multivariate statistical methods. Iranian Journal Pulses Research, 4(2), 21-34. (In Persian with English summary). https://doi.org/10.22067/ijpr.v1392i2.41258
Arzani, A. (2008). Improving salinity tolerance in crop plants: A biotechnological view. In vitro Cellular & Developmental Biology – Plant, 44, 373–383. https://doi.org/10.1007/s11627-008-9157-7
Arzani, A., & Ashraf, M. (2016). Smart engineering of genetic resources for enhanced salinity tolerance in crop plants. Critical Reviews in Plant Sciences, 35(3), 146-189. https://doi.org/10.1080/07352689.2016.1245056
Aslam, M., Maqbool, M.A., Mushtaq, Q., Akhtar, M.A., & Aslam, A.Y.E.S.H.A. (2018). Uncovering the biological and agronomic stability of chickpea (Cicer arietinum L.) genotypes against sodium chloride stress. Pakistan Journal of Botany, 50(4), 1297-1304.
Doraki, G.R., Zamani, G.R., & Sayyari, M.H. (2018). Effect of salt stress on yield and yield components in chickpea (Cicer arietinum L. cv. Azad). Iranian Journal Pulses Research, 9(1), 57-68. (In Persian with English summary). https://doi.org/10.22067/ijpr.v9i1.53816
Gautam, A., Panwar, R.K., Verma, S.K., Arora, A., Gaur, A.K., & Chauhan, C. (2021). Assessment of genetic variability parameters for yield and its components in chickpea (Cicer arietinum L.). Biological Forum–An International Journal, 13(2), 651-655.
Hoagland, D.R., & Arnon, D.L. (1950). The water culture method for growing plants without soil. California Agricultural Experiment Station Circular. pp. 347.
Kaashyap, M., Ford, R., Kudapa, H., Jain, M., Edwards, D., Varshney, R., & Mantri, N. (2018). Differential regulation of genes involved in root morphogenesis and cell wall modification is associated with salinity tolerance in chickpea. Scientific Reports, 8(1), 1-19.
Kaashyap, M., Ford, R., Mann, A., Varshney, R.K., Siddique, K.H., & Mantri, N. (2022). Comparative flower transcriptome network analysis reveals DEGs involved in chickpea reproductive success during salinity. Plants, 11(3), 434. https://doi.org/10.3390/plants11030434
Kotula, L., Clode, .P.L., Jimenez, J.D.L.C., & Colmer, T.D. (2019). Salinity tolerance in chickpea is associated with the ability to ‘exclude’ Na from leaf mesophyll cells. Journal of Experimental Botany, 70(18), 4991-5002. https://doi.org/10.1093/jxb/erz241
Kumar, N., Barmukh, R., Sengar, M.S., Bharadwaj, C., & Varshney, R.K. (2020). Genetic dissection and identification of candidate genes for salinity tolerance using Axiom® CicerSNP array in chickpea. International Journal of Molecular Sciences, 21(14), 5058.
Kumar, N., Bharadwaj, C., Soni, A., Sachdeva, S.U.P.R.I.Y.A., Yadav, M.C., Pal, M.A.D.A.N., & Rana, M.A.N.E.E.T. (2020). Physio-morphological and molecular analysis for salt tolerance in chickpea (Cicer arietinum L.). Indian Journal of Agricultural Sciences, 90(4), 132-136.
Kumar, N., Soren, K.R., Bharadwaj, C., PR, S.P., Shrivastava, A.K., Pal, M., & Varshney, R.K. (2021). Genome-wide transcriptome analysis and physiological variation modulates gene regulatory networks acclimating salinity tolerance in chickpea. Environmental and Experimental Botany, 187, 104478. https://doi.org/10.1016/j.envexpbot.2021.104478
Lavrenko, N., Lavrenko, S., Revto, O., & Lykhovyd, P. (2018). Effect of tillage and humidification conditions on desalination properties of chickpea (Cicer arietinum L.). Journal of Ecological Engineering, 19(5), 70-75. https://doi.org/10.12911/22998993/91265
Moustafa, E.S., Ali, M.M., Kamara, M.M., Awad, M.F., Hassanin, A.A., & Mansour, E. (2021). Field screening of wheat advanced lines for salinity tolerance. Agronomy, 11(2), 281. https://doi.org/10.3390/agronomy11020281
Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651-681. https://doi.org/10.1146/annurev.arplant.59.032607.092911
Mushtaq, Z., Faizan, S., Gulzar, B., Mushtaq, H., Bushra, S., Hussain, A., & Hakeem, K.R. (2022). Changes in growth, photosynthetic pigments, cell viability, lipid peroxidation and antioxidant defense system in two varieties of chickpea (Cicer arietinum L.) subjected to salinity stress. Phyton, 91(1), 149. 10.32604/phyton.2021.016231
Nabati, J., Kafi, M., Nezami, A., & Boroumand Rezazadeh, A. (2021). Evaluation of salinity tolerance of 140 desi chickpea (Cicer arietinum) genotypes. Iranian Journal of Pulses Research, 12(1), 220-205. (In Persian with English summary).
Nasiri, Z., Nabati, J., Nezami, A., & Kafi, M. (2021). Screening of Kabuli-type chickpea genotypes for salinity tolerance under field condition. Environmental Stresses in Crop Sciences, 14(4), 1055-1068.(In Persian with English summary). https://doi.org/10.22077/escs.2020.3290.1839
Pushpavalli, R., Quealy, J., Colmer, T.D., Turner, N.C., Siddique, K.H., Rao, M.V., & Vadez, V. (2016). Salt stress delayed flowering and reduced reproductive success of chickpea (Cicer arietinum L.), a response associated with Na+ accumulation in leaves. Journal of Agronomy and Crop Science, 202(2), 125-138. https://doi.org/10.1111/jac.12128
Rencher, A.C., & Christensen, W.F. (2002). Methods of multivariate analysis. A john wiley and sons Inc. Publication.
Soren, K.R., Madugula, P., Kumar, N., Barmukh, R., Sengar, M.S., Bharadwaj, C., & Varshney, R.K. (2020). Genetic dissection and identification of candidate genes for salinity tolerance using Axiom® CicerSNP array in chickpea. International Journal of Molecular Sciences, 21(14), 5058. https://doi.org/10.3390/ijms21145058
Sun, Y., Lindberg, S., Shabala, L., Morgan, S., Shabala, S., & Jacobsen, S.E. (2017). A comparative analysis of cytosolic Na+ changes under salinity between halophyte quinoa (Chenopodium quinoa) and glycophyte pea (Pisum sativum). Environmental and Experimental Botany, 141, 154-160. https://doi.org/10.1016/j.envexpbot.2017.07.003
Tandon, H.L.S. (1995). Methods of analysis of soils, plants, water and fertilizers. Fertiliser Development and Consultation Organisation, New Delhi.
Tsehaye, A., Fikre, A., & Bantayhu, M. (2020). Genetic variability and association analysis of Desi-type chickpea (Cicer arietinum L.) advanced lines under potential environment in North. Gondar, Ethiopia. Cogent Food and Agriculture, 6(1), 1806668. https://doi.org/10.1080/23311932.2020.1806668
Vaishnani, B., Nathwani, S.A., Baraiya, T., & Panigrahi, J. (2022). Physiological, biochemical, and enzymatic implications of “salt and lead” tolerance in Cicer arietinum under hydroponic culture condition. Egyptian Journal of Agricultural Research, 100(4), 483-498. https://doi.org/10.21608/ejar.2022.131925.1226
Zare Mehrjerdi. M., Nabati, J., Masomi, A., Bagheri, A.R., & Kafi, M. (2011). Evaluation of tolerance to salinity based on root and shoot growth of 11 drought tolerant and sensitive chickpea genotypes at hydroponics conditions. Iranian Journal Pulses Research, 2(2), 83-96. (In Persian with English summary). https://doi.org/10.22067/ijpr.v2i2.19045